[1] J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, Advances in CO2 capture technology-The U.S. Department of energy's carbon sequestration program, Int. J. Greenh. Gas Control. 2 (1) (2008) 9-20. [2] Z. Wang, D. Luo, L. Liu, Natural gas utilization in China: Development trends and prospects, Energy Rep 4 (2018) 351-356. [3] W.W. Tso, C.D. Demirhan, C.A. Floudas, C.A. Floudas, E.N. Pistikopoulos, Multi-scale energy systems engineering for optimal natural gas utilization, Catal. Today. 356 (2020) 18-26. [4] X.Y. Lin, J.Y. Li, M.Y. Qi, Z.R. Tang, Y.J. Xu, Methane conversion over artificial photocatalysts, Catal. Commun. 159 (2021) 106346. [5] C. Bessou, F. Ferchaud, B. Gabrielle, B. Mary, Biofuels, greenhouse gases and climate change. A review, Agron Sustain Dev 31 (2011) 1-79. [6] P. Cho, T. Mattisson, A. Lyngfelt, Defluidization conditions for a fluidized bed of iron oxide-, nickel oxide-, and manganese oxide-containing oxygen carriers for chemical looping combustion, Ind. Eng. Chem. Res. 45 (2006) 968-977. [7] D. Wawrzyńczak, M. Panowski, I. Majchrzak-Kucębaet, Possibilities of CO2 purification coming from oxy-combustion for enhanced oil recovery and storage purposes by adsorption method on activated carbon, Energy 180 (2019) 787-796. [8] F. He, H. Li, Z. Zhao, Advancements in Development of Chemical-Looping Combustion: A Review, Int J Chem Eng 2009 (2009) 1-16. [9] C.W. Ong, C.L. Chen, Intensification, optimization and economic evaluations of the CO2-capturing oxy-combustion CO2 power system integrated with the utilization of liquefied natural gas cold energy, Energy 234 (2021) 121255. [10] X. Zhu, Q. Imtiaz, F. Donat, C.R. Müller, F.X. Li. Chemical looping beyond combustion–a perspective. Energy Environ. Sci.13 (2020) 772-804. [11] H.J. Richter, K.F. Knoche, Reversibility of combustion processes, ACS Symp. Ser. 235 (1983) 71-86. [12] M. Ishida, D. Zheng, T. Akehata, Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis, Energy 12 (2) (1987) 147-157. [13] X. Zhu, Y.P. Du, H. Wang, Y.G. Wei, K.Z. Li, L.Y.Sun, Chemical interaction of Ce-Fe mixed oxides for methane selective oxidation, J. Rare Earths 32 (9) (2014) 824–830. [14] D. Tian, K.Z. Li, Y.G. Wei, X. Zhu, C.H. Zeng, X.M. Cheng, Y.E. Zheng, H. Wang, DFT insights into oxygen vacancy formation and CH4 activation over CeO2 surfaces modified by transition metals (Fe, Co and Ni), Phys. Chem. Chem. Phys. 20 (17) (2018) 11912–11929. [15] Y.P Du, X. Zhu, H. Wang, Y.G. Wei, K.Z. Li. Selective oxidation of methane to syngas using Pr0.7Zr0.3O2–Δ: Stability of oxygen carrier. T NONFERR METAL SOC. 25(4) (2015) 1248-1253. [16] Byeong, S. Kwak, Reduction and oxidation performance evaluation of Manganese-based iron, cobalt, nickel, and copper bimetallic oxide oxygen carriers for chemical-looping combustion, Appl. Therm. Eng. 128 (2018) 1273–1281.[LinkOut]. [17] M. Mohammedramadan, Tijani, Determination of redox pathways of supported bimetallic oxygen carriers in a methane fuelled chemical looping combustion system, Fuel 233 (2018) 133–145. [18] T. Mattisson, M. Johansson, A.Lyngfelt, Multicycle reduction and oxidation of different types of iron oxide ParticlesApplication to chemical-looping combustion, Energy Fuels 18 (3) (2004) 628–637. [19] E.R. Monazam, R.W. Breault, R.Siriwardane, Kinetics of magnetite (Fe3O4) oxidation to hematite (Fe2O3) in air for chemical looping combustion, Ind. Eng. Chem. Res. 53 (34) (2014) 13320–13328. [20] E. Monazam, R. Breault, R. Siriwardane, G. Richards, S. Carpenter, Kinetics of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping combustion: a global mechanism, Chem. Eng. J. 232 (2013) 478–487. [21] Tobias, Mattisson, The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2, Fuel 80 (13) (2001) 1953–1962. [22] S. Nasr, K.P. Plucknett, Kinetics of iron ore reduction by methane for chemical looping combustion, Energy Fuels 28 (2) (2014) 1387–1395. [23] Z.P. Chen, S. Wang, W.G. Liu, X.H. Gao, D.N. Gao, M.Z. Wang, S.D. Wang, Morphology-dependent performance of CO3O4 via facile and controllable synthesis for methane combustion, Appl. Catal. A-Gen. 525 (2016) 94-102. [24] J.M. Gu, S.H. Li, E.B. Wang, Q.Y. Li, G.Y. Sun, R. Xu, H. Zhang, Single-crystalline α-Fe2O3 with hierarchical structures: Controllable synthesis, formation mechanism and photocatalytic properties, J. Solid. State. Chem. 182 (2009) 1265-1272. [25] B.T. Hang, T.T. Anh, Controlled synthesis of various Fe2O3 morphologies as energy storage materials, Sci. Rep. 11 (1) (2021) 5185. [26] B.M. Corbella, L. de Diego, F. García Labiano, J. Adánez, J.M. Palacios, Characterization and performance in a multicycle test in a fixed-bed reactor of silica-supported copper oxide as oxygen carrier for chemical-looping combustion of methane, Energy Fuels 20 (1) (2006) 148–154. [27] L. Nalbandian, A. Eudou, V. Zaspalis, La1-xSrxMyFe1-yO3-δ perovskites as oxygen-carrier materials for chemical-looping reforming, Int. J. Hydrogen. Energ. 36 (11) (2011) 6657-6670. [28] F. He, J. Chen, S. Liu, Z. Huang, G.Q. Wei, G.X. Wang, Y. Cao, K. Zhao, La1-xSrxFeO3 perovskite-type oxides for chemical-looping steam methane reforming: Identification of the surface elements and redox cyclic performance, Int. J. Hydrogen. Energ. 44 (21, 23) (2019) 10265-10276. [29] N.L. Galinsky, H. Yan, A. Shafiefarhood, F.X. Li, Iron oxide with facilitated O2– transport for facile fuel oxidation and CO2 capture in a chemical looping scheme, ACS. Sustain. Chem. Eng. 1 (3) (2013) 364-373. [30] A. Shafiefarhood, N. Galinsky, A.P.Y. Huang, Y.G. Chen, A. Li, Fe2O3@LaxSr1-xFeO3 Core–Shell Redox Catalyst for Methane Partial Oxidation, ChemCatChem 6 (2014) 790-799. [31] V.V. Kharton, M.V. Patrakeev, J.C. Waerenborgh, V.A. Sobyanin, S.A. Veniaminov, A.A. Yaremchenko, P. Gaczyński, V.D. Belyaev, G.L. Semin, J.R. Frade, Methane oxidation over perovskite-related ferrites: effects of oxygen nonstoichiometry, Solid. State. Sci. 7 (11) (2005) 1344-1352. [32] H.Z. Wang, W.C. Xu, S. Richins, K. Liaw, L. Yan, M. Zhou, H.M. Luo, Polymer-assisted approach to LaCo1-xNixO3 network nanostructures as bifunctional oxygen electrocatalysts, Electrochim. Acta. 296 (2019) 954-953. [33] C. Jin, X.C. Cao, F.L. Lu, Z.R. Yang, R.Z. Yang, Electrochemical study of Ba0.5Sr0.5Co0.8Fe0.2O3 perovskite as bifunctional catalyst in alkaline media, Int. J. Hydrogen. Energ. 38 (25) (2013) 10389-10393. [34] K.Y. Zhu, H.Y. Liu, X.N. Li, Q.M. Li, J.H. Wang, X.F. Zhu, W.S. Yang, Oxygen evolution reaction over Fe site of BaZrxFe1-xO3-σ perovskite oxides, Electrochim. Acta. 241 (2017) 433-439. [35] Y.J. Sim, I.C. Yang, D. Kwon, J.M. Ha, J.C. Jung, Preparation of LaAlO3 perovskite catalysts by simple solid-state method for oxidative coupling of methane, Catal. Today. 352 (2020) 134-139. [36] H.Y. Wang, H.J. Han, Y.N. Zhang, J.X. Li, Y.G. Chen, H. Song, E.H. Sun, H.Z. Zhao, M. Zhang, D.D. Yuan, Influence of calcination temperature for LaTi0.2Fe0.8O3 on catalytic pyrolysis of bagasse lignin, J. Rare. Earth. 8 (37) (2019) 837-844. [37] D. Sánchez-Rodríguez, H. Wada, S. Yamaguchi, J. Farjas, H. Yahiro, Self-propagating high-temperature synthesis of LaMO3 perovskite-type oxide using heteronuclearcyano metal complex precursors, J. Alloys Compd. 649 (2015) 1291-1299. [38] M. Yamada, S.Y. Yonekura, Nanometric metal-organic framework of Ln[Fe(CN)6]: morphological analysis and thermal conversion dynamics by direct TEM observation, J. Phys. Chem. C. 113 (52) (2009) 21531-21537. [39] S. Farhadi, F. Siadatnasab, Perovskite-type LaFeO3 nanoparticles prepared by thermal decomposition of the La[Fe(CN)6]·5H2O complex: A new reusable catalyst for rapid and efficient reduction of aromatic nitro compounds to arylamines with propan-2-ol under microwave irradiation, J. Mol. Catal. A-Chem. 339 (1–2) (2011) 108-116. [40] S. Yamaguchi, H. Wada, D. SÁNCHEZ-RODRÍGUEZ, J. FARJAS, H. YAHIRO, Synthesis of perovskite-type oxide, LaFeO3, from coordination polymer precursor, La[Fe(CN)6]·5H2O, JCSJ 124 (12) (2016) 3284-3289. [41] H.T. Huang, W.L. Zhang, X.D. Zhang, X. Guo, NO2 sensing properties of SmFeO3 porous hollow microspheres, Sens. Actuators. B-Chem. 265 (2018) 443-451. [42] X.D. Zhang, W.L. Zhang, Z.X. Cai, Y.K. Li, Y. Yusuke, G. Xin, MOF-Derived LaFeO3 Porous Hollow Micro-Spindles for NO2 Sensing, Ceram. Int. 45 (2019) 5240-5248. [43] S.G. Duyker, G.J. Halder, P.D. Southon, D.J. Price, A.J. Edwards, V.K. Peterson, C.J. Kepert, Topotactic structural conversion and hydration-dependent thermal expansion in robust LnMIII(CN)6·nH2O and flexible ALnFeII(CN)6·nH2O frameworks (A = Li, Na, K; Ln = La-Lu, Y; M = Co, Fe; 0 ≤ n ≤ 5), Chem. Sci. 9 (5) (2014) 3409-3417. [44] H. Jiao, J.L. Wang. Single crystal ellipsoidal and spherical particles of α-Fe2O3: Hydrothermal synthesis, formation mechanism, and magnetic properties. J Alloy Compd. 577 (2013) 402-408. [45] R. Wang, C. Xu, J. Sun, L. Gao. Three-Dimensional Fe2O3 Nanocubes/Nitrogen-doped Graphene Aerogels: Nucleation Mechanism and Lithium Storage Properties. Sci Rep 4(2014) 7171. [46] Z.G. An, J.J. Zhang, S.L. Pan, G.Z. Song. Novel peanut-like α-Fe2O3 superstructures: Oriented aggregation and Ostwald ripening in a one-pot solvothermal process. Powder Technol. 217(2012) 274-280. [47] Y.X. Wang, X.Z. Cui, Z. Shu, Y.S. Li, H.R. Chen, J.L. Shi, A simple co-nanocasting method to synthesize high surface area mesoporous LaCoO3 oxides for CO and NO oxidations, Micropor. Mesopor. Mat. 176 (2013) 8-15. [48] R.E. Linga, Z. Lu, S. Youssef, O.C. Samy, L. Sergei, G. Daniel, D.G. Pascal, B. Jean-Marie, Methane-induced activation mechanism of fused ferric oxide-alumina catalysts during methane decomposition, ChemSusChem 9 (15) (2016) 1911-1915. [49] A. Pérez, M. Orfila, M. Linares, M. Linares, R. Sanz, J. Marugán, R. Molina, J.A. Botas, Hydrogen production by thermochemical water splitting with La0.8Al0.2MeO3-δ (Me= Fe, Co, Ni and Cu) perovskites prepared under controlled pH, Catal. Today. 390 (2022) 22-33. [50] Y.G. Chen, N. Galinsky, Z.R. Wang, F.X. Li, Investigation of perovskite supported composite oxides for chemical looping conversion of syngas, Fuel 134 (2014) 521-530. [51] H. Nishimoto, K. Nakagawa, N. Ikenaga, M. Nishitani-Gamo, T. Ando, T. Suzuki, Partial oxidation of methane to synthesis gas over oxidized diamond catalysts, Appl. Catal. A-Gen. 264 (1) (2004) 65-72. [52] W.Y. Hernández, M.N. Tsampas, C. Zhao, A. Boreave, F. Bosselet, P. Vernoux, La/Sr-based perovskites as soot oxidation catalysts for Gasoline Particulate Filters, Catal. Today. 258 (2015) 525-534. [53] D.Z. Shi, R.S. Hu, Q.H. Zhou, L.R. Yang, Catalytic activities of supported perovskite promoter catalysts La2NiMnO6-CuCl2/γ-Al2O3 and La1.7K0.3NiMnO6-CuCl2/γ-Al2O3 for ethane oxychlorination, Chem. Eng. J. 288 (2016) 588-595. [54] T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe 2+ and Fe 3+ ions in oxide materials, Appl. Surf. Sci. 254 (8) (2008) 2441-2449. [55] K. Sutthiumporn, S. Kawi, Promotional effect of alkaline earth over Ni–La2O3 catalyst for CO2 reforming of CH4: Role of surface oxygen species on H2 production and carbon suppression, Int. J. Hydrogen Energ 36 (22) (2011) 14435-14446. [56] J.L.G. Fierro, Structure and composition of perovskite surface in relation to adsorption and catalytic properties, Catal. Today. 8 (1990) 153-174. [57] C.M. Shi, H.W. Qin, M. Zhao, X.F. Wang, L. Li, J.F. Hu, Investigation on electrical transport, CO sensing characteristics and mechanism for nanocrystalline La1-xCaxFeO3 sensors, Sensor. Actuat. B-Chem. 190 (2014) 25-31. [58] Z. Cheng, L. Qin, M.Q. Guo, M.Y. Xu, J.A. Fan, L. Fan, Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process, Phys. Chem. Chem. Phys. 18 (2016) 32418-32428. [59] J. Yang, S.Y. Hu, L.M. Shi, S. Hoang, W.W Yang, Y.R. Fang, Z.F. Liang, C.Q. Pan, Y.H. Zhu, L. Li, J. Wu, J.P Hu, Y.B. Guo, Oxygen vacancies and Lewis acid sites synergistically promoted catalytic methane combustion over perovskite oxides, Environ. Sci. Technol. 55 (2021) 9243-9254. [60] G. Tian, X.Y Liu, C.X Zhang, X.Y Fan, H. Xiong, X. Chen, Z.W. Li, B.H Yan, L. Zhang, N. Wang, H.J. Peng, F. Wei. Accelerating syngas-to-aromatic conversion via spontaneously monodispersed Fe in ZnCr2O4 spinel. Nat Commun. 13 (2022) 5567. |