[1] P.S. Kulkarni, C.A.M. Afonso, Deep desulfurization of diesel fuel using ionic liquids: Current status and future challenges, Green Chem. 12 (7) (2010) 1139. [2] P. Betancourt, S. Pinto-Castilla, Effect of Cu-promotion on the performance of molybdenum sulfide for hydrotreating of FCC gasoline, Catal. Lett. 149 (9) (2019) 2425–2432. [3] M.J.B. Souza, A.M. Garrido Pedrosa, J.A. Cecilia, A.M. Gil-Mora, E. Rodríguez-Castellón, Hydrodesulfurization of dibenzothiophene over PtMo/MCM-48 catalysts, Catal. Commun. 69 (2015) 217–222. [4] J.M. Campos-Martin, M.C. Capel-Sanchez, P. Perez-Presas, J.L.G. Fierro, Oxidative processes of desulfurization of liquid fuels, J. Chem. Technol. Biotechnol. 85 (7) (2010) 879–890. [5] L.F. Ramírez-Verduzco, E. Torres-García, R. Gómez-Quintana, V. González-Peña, F. Murrieta-Guevara, Desulfurization of diesel by oxidation/extraction scheme: Influence of the extraction solvent, Catal. Today 98 (1–2) (2004) 289–294. [6] M. Muzic, K. Sertic-Bionda, T. Adzamic, Desulfurization of diesel fuel in a fixed bed adsorption column: Experimental study and simulation, Petrol. Sci. Technol. 29 (22) (2011) 2361–2371. [7] N. Etemadi, A.A. Sepahy, G. Mohebali, F. Yazdian, M. Omidi, Enhancement of bio-desulfurization capability of a newly isolated thermophilic bacterium using starch/iron nanoparticles in a controlled system, Int. J. Biol. Macromol. 120 (2018) 1801–1809. [8] X.D. Tang, Z.Y. Wang, J.J. Li, X.J. Lei, Melting-type acidic quaternary ammonium ionic liquids as catalysts for alkylation desulfurization of FCC gasoline, Catal. Commun. 138 (2020) 105873. [9] Y.K. Ong, G.M. Shi, N.L. Le, Y.P. Tang, J. Zuo, S.P. Nunes, T.S. Chung, Recent membrane development for pervaporation processes, Prog. Polym. Sci. 57 (2016) 1–31. [10] H. Ding, F.S. Pan, E. Mulalic, H. Gomaa, W.D. Li, H. Yang, H. Wu, Z.Y. Jiang, B.Y. Wang, X.Z. Cao, P. Zhang, Enhanced desulfurization performance and stability of Pebax membrane by incorporating Cu+ and Fe2+ ions co-impregnated carbon nitride, J. Membr. Sci. 526 (2017) 94–105. [11] M. Benzaqui, R. Semino, F. Carn, S.R. Tavares, N. Menguy, M. Giménez-Marqués, E. Bellido, P. Horcajada, T. Berthelot, A.I. Kuzminova, M.E. Dmitrenko, A.V. Penkova, D. Roizard, C. Serre, G. Maurin, N. Steunou, Covalent and selective grafting of polyethylene glycol brushes at the surface of ZIF-8 for the processing of membranes for pervaporation, ACS Sustainable Chem. Eng. 7 (7) (2019) 6629–6639. [12] K. Rychlewska, W. Kujawski, K. Konieczny, Pervaporative removal of organosulfur compounds (OSCs) from gasoline using PEBA and PDMS based commercial hydrophobic membranes, Chem. Eng. J. 309 (2017) 435–444. [13] S. Xu, L.F. Liu, Y. Wang, Network cross-linking of polyimide membranes for pervaporation dehydration, Sep. Purif. Technol. 185 (2017) 215–226. [14] P. Roy Choudhury, S. Majumdar, G.C. Sahoo, S. Saha, P. Mondal, High pressure ultrafiltration CuO/hydroxyethyl cellulose composite ceramic membrane for separation of Cr (VI) and Pb (II) from contaminated water, Chem. Eng. J. 336 (2018) 570–578. [15] L.G. Lin, Y. Kong, G. Wang, H.M. Qu, J.R. Yang, D.Q. Shi, Selection and crosslinking modification of membrane material for FCC gasoline desulfurization, J. Membr. Sci. 285 (1–2) (2006) 144–151. [16] K. Liu, C.J. Fang, Z.Q. Li, M. Young, Separation of thiophene/n-heptane mixtures using PEBAX/PVDF-composited membranes via pervaporation, J. Membr. Sci. 451 (2014) 24–31. [17] H.W. Fan, N.X. Wang, S.L. Ji, H. Yan, G.J. Zhang, Nanodisperse ZIF-8/PDMS hybrid membranes for biobutanol permselective pervaporation, J. Mater. Chem. A 2 (48) (2014) 20947–20957. [18] D.B. Bailmare, S.J. Dhoble, A.D. Deshmukh, Metal organic frameworks and their derived materials for capacity enhancement of supercapacitors: Progress and perspective, Synth. Met. 282 (2021) 116945. [19] M.V. Varsha, G. Nageswaran, L. Jothi, A. Ravi Sankar, Review—recent advances in metal organic framework derived carbon materials for electrocatalytic applications, J. Electrochem. Soc. 169 (3) (2022) 036503. [20] K.A. Cychosz, A.G. Wong-Foy, A.J. Matzger, Liquid phase adsorption by microporous coordination polymers: Removal of organosulfur compounds, J. Am. Chem. Soc. 130 (22) (2008) 6938–6939. [21] R.J. Lin, L. Ge, L. Hou, E. Strounina, V. Rudolph, Z.H. Zhu, Mixed matrix membranes with strengthened MOFs/polymer interfacial interaction and improved membrane performance, ACS Appl. Mater. Interfaces 6 (8) (2014) 5609–5618. [22] Y.M. Song, D.H. Yang, S.N. Yu, X.S. Teng, Z. Chang, F.S. Pan, X.H. Bu, Z.Y. Jiang, B.Y. Wang, S. Wang, X.Z. Cao, Hybrid membranes with Cu(II) loaded metal organic frameworks for enhanced desulfurization performance, Sep. Purif. Technol. 210 (2019) 258–267. [23] L.B. Yang, Z. Wang, J.L. Zhang, Zeolite imidazolate framework hybrid nanofiltration (NF) membranes with enhanced permselectivity for dye removal, J. Membr. Sci. 532 (2017) 76–86. [24] H.X. Sun, Z. Magnuson, W.W. He, W.J. Zhang, H. Vardhan, X.L. Han, G.H. He, S.Q. Ma, PEG@ZIF-8/PVDF nanocomposite membrane for efficient pervaporation desulfurization via a layer-by-layer technology, ACS Appl. Mater. Interfaces 12 (18) (2020) 20664–20671. [25] G.J. Ross, J.F. Watts, M.P. Hill, P. Morrissey, Surface modification of poly(vinylidene fluoride) by alkaline treatment1. The degradation mechanism, Polymer 41 (5) (2000) 1685–1696. [26] Q.F. Liu, C.H. Lee, H. Kim, Performance evaluation of alkaline treated poly(vinylidene fluoride) membranes, Sep. Sci. Technol. 45 (9) (2010) 1209–1215. [27] S. Gadipelli, W. Travis, W. Zhou, Z.X. Guo, A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake, Energy Environ. Sci. 7 (7) (2014) 2232–2238. [28] I. Kohsari, Z. Shariatinia, S.M. Pourmortazavi, Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles, Int. J. Biol. Macromol. 91 (2016) 778–788. [29] N. Liu, J. Cheng, W. Hou, X. Yang, J.H. Zhou, Pebax-based mixed matrix membranes loaded with graphene oxide/core shell ZIF-8@ZIF-67 nanocomposites improved CO2 permeability and selectivity, J. Appl. Polym. Sci. 138 (23) (2021) 50553. [30] R. Gregorio Jr, Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions, J. Appl. Polym. Sci. 100 (4) (2006) 3272–3279. [31] E. Jang, E. Kim, H. Kim, T. Lee, H.J. Yeom, Y.W. Kim, J. Choi, Formation of ZIF-8 membranes inside porous supports for improving both their H2/CO2 separation performance and thermal/mechanical stability, J. Membr. Sci. 540 (2017) 430–439. [32] J. Gao, H.Z. Mao, H. Jin, C. Chen, A. Feldhoff, Y.S. Li, Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation, Microporous Mesoporous Mater. 297 (2020) 110030. [33] M.Q. Fang, H.T. Zhang, J.X. Chen, T. Wang, J. Liu, X. Li, J.D. Li, X.Z. Cao, A facile approach to construct hierarchical dense membranes via polydopamine for enhanced propylene/nitrogen separation, J. Membr. Sci. 499 (2016) 290–300. [34] D. Yamamoto, T. Maki, S. Watanabe, H. Tanaka, M.T. Miyahara, K. Mae, Synthesis and adsorption properties of ZIF-8 nanoparticles using a micromixer, Chem. Eng. J. 227 (2013) 145–150. [35] J. Qiu, Y. Xin, X. Ju, L.P. Guo, B.Y. Wang, Y.R. Zhong, Q.Y. Huang, Y.C. Wu, Investigation by slow positron beam of defects in CLAM steel induced by helium and hydrogen implantation, Nucl. Instrum. Meth. Phys. Res. Sect. B 267 (18) (2009) 3162–3165. [36] A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’Keeffe, O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Acc. Chem. Res. 43 (1) (2010) 58–67. [37] X.L. Han, T.T. Hu, Y. Wang, H.Y. Chen, Y.Q. Wang, R.Q. Yao, X.X. Ma, J.D. Li, X.F. Li, A water-based mixing process for fabricating ZIF-8/PEG mixed matrix membranes with efficient desulfurization performance, Sep. Purif. Technol. 214 (2019) 61–66. [38] G.H. Liu, T.T. Zhou, W.P. Liu, S. Hu, F.S. Pan, H. Wu, Z.Y. Jiang, B.Y. Wang, J. Yang, X.Z. Cao, Enhanced desulfurization performance of PDMS membranes by incorporating silver decorated dopamine nanoparticles, J. Mater. Chem. A 2 (32) (2014) 12907. [39] Y. Kong, L.G. Lin, Y.Z. Zhang, F.W. Lu, K.K. Xie, R.K. Liu, L. Guo, S. Shao, J.R. Yang, D.Q. Shi, Studies on polyethylene glycol/polyethersulfone composite membranes for FCC gasoline desulphurization by pervaporation, Eur. Polym. J. 44 (10) (2008) 3335–3343. [40] S.N. Yu, Z.Y. Jiang, W.D. Li, J.Q. Mayta, H. Ding, Y.M. Song, Z. Li, Z.W. Dong, F.S. Pan, B.Y. Wang, P. Zhang, X.Z. Cao, Elevated performance of hybrid membranes by incorporating metal organic framework CuBTC for pervaporative desulfurization of gasoline, Chem. Eng. Process. Process. Intensif. 123 (2018) 12–19. [41] S.N. Yu, F.S. Pan, S. Yang, H. Ding, Z.Y. Jiang, B.Y. Wang, Z.X. Li, X.Z. Cao, Enhanced pervaporation performance of MIL-101 (Cr) filled polysiloxane hybrid membranes in desulfurization of model gasoline, Chem. Eng. Sci. 135 (2015) 479–488. [42] S.N. Yu, Z.Y. Jiang, H. Ding, F.S. Pan, B.Y. Wang, J. Yang, X.Z. Cao, Elevated pervaporation performance of polysiloxane membrane using channels and active sites of metal organic framework CuBTC, J. Membr. Sci. 481 (2015) 73–81. [43] D. Yang, S. Yang, Z.Y. Jiang, S.N. Yu, J.L. Zhang, F.S. Pan, X.Z. Cao, B.Y. Wang, J. Yang, Polydimethyl siloxane-graphene nanosheets hybrid membranes with enhanced pervaporative desulfurization performance, J. Membr. Sci. 487 (2015) 152–161. [44] F.S. Pan, M.D. Wang, H. Ding, Y.M. Song, W.D. Li, H. Wu, Z.Y. Jiang, B.Y. Wang, X.Z. Cao, Embedding Ag+@COFs within Pebax membrane to confer mass transport channels and facilitated transport sites for elevated desulfurization performance, J. Membr. Sci. 552 (2018) 1–12. [45] Zhang Y, Jiang Z Y, Song J, Cao X Z. Elevated pervaporative desulfurization performance of Pebax-Ag+@MOFs hybrid membranes by integrating multiple transport mechanisms. Ind Eng Chem Res. 58 (2019) 16911-16921. [46] W.Y. Shi, X.L. Han, F. Bai, C. Hua, X.Z. Cao, Enhanced desulfurization performance of polyethylene glycol membrane by incorporating metal organic framework MOF-505, Sep. Purif. Technol. 272 (2021) 118924. |