[1] F.H. Wu, Y. Ren, G.F. Qu, S. Liu, B.J. Chen, X.X. Liu, C.Y. Zhao, J.Y. Li, Utilization path of bulk industrial solid waste:A review on the multi-directional resource utilization path of phosphogypsum, J. Environ. Manag. 313(2022)114957. [2] Y. Chernysh, O. Yakhnenko, V. Chubur, H. Roubík, Phosphogypsum recycling:A review of environmental issues, current trends, and prospects, Appl. Sci. 11(4)(2021)1575. [3] Z.Q. Wei, Z.B. Deng, Research hotspots and trends of comprehensive utilization of phosphogypsum:Bibliometric analysis, J. Environ. Radioact. 242(2022)106778. [4] J.E. Yang, S.Y. Liu, Y.F. Wang, Y. Huang, Y.X. Sun, Q.X. Dai, H.P. Liu, L.P. Ma, Phosphogypsum resource utilization based on thermodynamic analysis, Chem. Eng. Technol. 45(5)(2022)776-790. [5] L.G. Atanasova, Exergy analysis of the process of wet-process phosphoric acid production with full utilisation of sulphur contained in the waste phosphogypsum, Int. J. Exergy 7(6)(2010)678. [6] D. Ma, Q. Wang, Experimental study of CaS preparation from lignite-reduced phosphogypsum in a fluidized bed, J. Chem. Technol. Biotechnol. 98(2022)756-772. [7] D. Zheng, H.L. Lu, X.Y. Sun, X.D. Liu, W.Q. Han, L.J. Wang, Reaction mechanism of reductive decomposition of FGD gypsum with anthracite, Thermochim Acta 559(2013)23-31. [8] S.C. Zheng, P. Ning, L.P. Ma, F.X. Cheng, J.Y. Shi, Phosphogypsum as a raw material for the production of SO2 and lime in circulating fluidized beds, Combust. Sci. Technol. 186(3)(2014)377-386. [9] Y.X. Bi, L. Xu, M. Yang, Q.L. Chen, Study on the effect of the activity of anthracite on the decomposition of phosphogypsum, Ind. Eng. Chem. Res. 61(19)(2022)6311-6321. [10] J.D. Ma, J.Z. Xu, C.H. Liu, Q. Yi, M. Zheng, L.M. Cheng, T. Song, Chemical looping combustion of sulfur paste to SO2 by phosphogypsum oxygen carrier for sulfur acid production, Fuel 323(2022)124386. [11] K. Antar, M. Jemal, A thermogravimetric study into the effects of additives and water vapor on the reduction of gypsum and Tunisian phosphogypsum with graphite or coke in a nitrogen atmosphere, J. Therm. Anal. Calorim. 132(1)(2018)113-125. [12] Q. Liu, X.Q. Ao, Q.L. Chen, Y. Xie, Y. Cao, Reaction characteristics and kinetics of phosphogypsum decomposition via synergistic reduction effect of composite reducing agent, J. Mater. Cycles Waste Manag. 24(2)(2022)595-605. [13] A.V. Suslikov, B.S. Zhirnov, F.R. Murtazin, A study of the kinetics of the reaction of petroleum coke with phosphogypsum to give calcium sulfide, Chem. Technol. Fuels Oils 57(3)(2021)461-466. [14] X.S. Yang, Z.Y. Zhang, X.L. Wang, L. Yang, B.H. Zhong, J.F. Liu, Thermodynamic study of phosphogypsum decomposition by sulfur, J. Chem. Thermodyn. 57(2013)39-45. [15] R. Fang, H. Tan, W. Mao, X. Ma, Y. Feng, Q. Jiang, F. Yang, Influence of carbon and additives on the high-temperature decomposition behavior of phosphogypsum, Mater. Tehnol. 54(6)(2020)861-865. [16] W.M. Song, J.N. Zhou, B. Wang, S. Li, R.J. Cheng, Production of SO2 gas:New and efficient utilization of flue gas desulfurization gypsum and pyrite resources, Ind. Eng. Chem. Res. 58(44)(2019)20450-20460. [17] J. Yang, L.P. Ma, J. Yang, H.P. Xiang, H.P. Liu, Z.Y. Guo, Mechanism of lignite-to-pure syngas low temperature chemical looping gasification synergistic in situ S capture, Fuel 222(2018)675-686. [18] Y. Lian, L.P. Ma, H.P. Liu, J.X. Tang, B. Zhu, G.P. Ma, D.L. Zheng, J. Yang, Experimental study on preparation of calcium sulfide via phosphogypsum and hydrogen sulfide reaction, Chem. Eng. China 44(8)(2016)48-52. [19] K. Zhu, G. Xie, Z. Chen, Q. Wang, Reaction characteristics of phosphogypsum under carbon monoxide atmosphere, J. Chin. Ceram. Soc. 41(2013)1540-1545. [20] X.J. Ren, J.P. Xia, Z.S. Zhang, Thermodynamic analysis of reductive decomposition for phosphogypsum, Chin. J. Environ. Eng. 7(3)(2013)1128-1132. [21] X. Xia, L.Q. Zhang, Z.Y. Li, X.L. Yuan, C.Y. Ma, Z.L. Song, G.F. Chen, Recovery of CaO from CaSO4 via CO reduction decomposition under different atmospheres, J. Environ. Manag. 301(2022)113855. [22] D.L. Zheng, L.P. Ma, R.M. Wang, J. Yang, Q.X. Dai, Research on thermal decomposing properties of phosphogypsum with Fe addition under multiatmosphere control, Thermochim Acta 661(2018)59-66. [23] J. Yang, B. Zhu, L.P. Ma, H.P. Liu, Investigation of Al2O3 and Fe2O3 transmission and transformation during the decomposition of phosphogypsum, Chin. J. Chem. Eng. 27(5)(2019)1125-1131. [24] L. Sun, Z.J. Zhao, X.S. Yang, Y. Sun, Q.D. Li, C.H. Luo, Q. Zhao, Thermochemical decomposition of phosphogypsum with Fe-P slag via a solid-state reaction, Chin. J. Chem. Eng. 47(2022)113-119. [25] L.J. Zhao, T.M. Wan, X.S. Yang, L. Yang, X.J. Kong, Z.Y. Zhang, X.L. Wang, Effects of kaolinite addition on the melting characteristics of the reaction between phosphogypsum and CaS, J. Therm. Anal. Calorim. 119(3)(2015)2119-2126. [26] T. Shi, T.M. Wan, Z.Y. Zhang, X.S. Yang, L. Yang, B.H. Zhong, X.J. Kong, X.L. Wang, Effect of SiO2 on the melting characteristics of reaction between phosphogypsum and calcium sulfide, J. Therm. Anal. Calorim. 123(2)(2016)1601-1609. [27] D.H. Lu, Q.L. Chen, C.Q. Li, S. Gong, Effect of potassium feldspar on the decomposition rate of phosphogypsum, J. Chem. Technol. Biotechnol. 96(2)(2021)374-383. [28] Z.Q. Yan, Z.A. Wang, H. Liu, Y.J. Tu, W. Yang, H.C. Zeng, J.R. Qiu, Decomposition and solid reactions of calcium sulfate doped with SiO2, Fe2O3 and Al2O3, J. Anal. Appl. Pyrol. 113(2015)491-498. [29] P. Zhou, L. Luo, X. Tu, Preparation and properties of copper slag tailing-lake sediment ceramsite, J. Cent. South Univ. Technol. 52(2021)4210-4218. [30] H.Y. Guo, Z.J. Wang, D.D. An, J.Y. Huo, Collaborative design of cement-based composites incorporated with cooper slag in considerations of engineering properties and microwave-absorbing characters, J. Clean. Prod. 283(2021)124614. [31] Z.C. Di, F.L. Yang, Y. Cao, K. Zhang, Y.X. Guo, S.L. Gao, F.Q. Cheng, The transformation pathways on the catalytic and stability-promoted CaSO4 reduction in CLC process using Fe2O3 supported, Fuel 253(2019)327-338. [32] T. Feng, M.J. Huo, X.Q. Zhao, T. Wang, X. Xia, C.Y. Ma, Reduction of SO2 to elemental sulfur with H2 and mixed H2/CO gas in an activated carbon bed, Chem. Eng. Res. Des. 121(2017)191-199. [33] X. Xia, X.Q. Zhao, P. Zhou, T. Feng, C.Y. Ma, Z.L. Song, Reduction of SO2 to elemental sulfur with carbon materials through electrical and microwave heating methods, Chem. Eng. Process. 150(2020)107877. [34] J.R. Ma, Z.Y. Liu, Q.Y. Liu, S.J. Guo, Z.G. Huang, Y. Xiao, SO2 and NO removal from flue gas over V2O5/AC at lower temperatures-Role of V2O5 on SO2 removal, Fuel Process. Technol. 89(3)(2008)242-248. |