[1] W.T. Tsai, Environmental and health risk analysis of nitrogen trifluoride (NF3), a toxic and potent greenhouse gas, J. Hazard. Mater. 159(2-3)(2008)257-263. [2] J.Y. Jeon, X.F. Xu, M.H. Choi, H.Y. Kim, Y.K. Park, Hydrolytic decomposition of PFCs over AlPO4-Al2O3 catalyst, Chem. Commun. 11(2003)1244-1245. [3] T. Takubo, Y. Hirose, D. Kashiwagi, T. Inoue, H. Yamada, K. Nagaoka, Y. Takita, Metal phosphate and fluoride catalysts active for hydrolysis of NF3, Catal. Commun. 11(3)(2009)147-150. [4] N.K. Park, Y.H. Jeong, J.W. Lee, T.J. Lee, Catalytic activity of AlF3 nano-structure for hydrolysis of NF3, Catal. Today 303(2018)46-54. [5] E. Vileno, M.K. Leclair, S.L. Suib, M.B. Cutlip, F.S. Galasso, S.J. Hardwickl, Thermal decomposition of NF3 with various oxides, Chem. Mater. 8(6)(1996)1217-1221. [6] X.F. Xu, L. Sun, Y.N. Wang, NF3 decomposition over Al2O3 reagents without water, J. Nat. Gas Chem. 20(4)(2011)418-422. [7] X.J. Niu, L. Sun, Y.N. Wang, H.P. Wu, X.F. Xu, NF3 decomposition over some metal oxides in the absence of water, J. Nat. Gas Chem. 19(5)(2010)463-467. [8] Q. Gao, Y.N. Wang, Y.F. Pan, Y.L. Li, Z.Y. Sui, X.F. Xu, NF3 decomposition over V2O5, Fe2O3 and Co3O4 coated-Al2O3 reagents:The effect of promoter loadings on reactivity, J. Environ. Chem. Eng. 8(4)(2020)103890. [9] X.F. Xu, Q. Gao, C.X. Yin, Y.F. Pan, NF3 decomposition in the absence of water over some metal oxides coated-Al2O3 reagents, J. Environ. Chem. Eng. 7(3)(2019)103192. [10] Y. Mathieu, B. Lebeau, V. Valtchev, Control of the morphology and particle size of boehmite nanoparticles synthesized under hydrothermal conditions, Langmuir 23(18)(2007)9435-9442. [11] Y.L. Feng, W.C. Lu, L.M. Zhang, X.H. Bao, B.H. Yue, Y. lv, X.F. Shang, One-step synthesis of hierarchical cantaloupe-like AlOOH superstructures via a hydrothermal route, Cryst. Growth Des. 8(4)(2008)1426-1429. [12] X.Y. Wu, D.B. Wang, Z.S. Hu, G.H. Gu, Synthesis of γ-AlOOH (γ-Al2O3) self-encapsulated and hollow architectures, Mater. Chem. Phys. 109(2-3)(2008)560-564. [13] X.Y. Wu, B.Q. Zhang, D.B. Wang, Z.S. Hu, Morphology evolution studies of boehmite hollow microspheres synthesized under hydrothermal conditions, Mater. Lett. 70(2012)128-131. [14] Y. Chang, Z.Y. Ling, Y. Li, X. Hu, Hydrothermal synthesis of aluminum oxy-hydroxide nanorod and nanotube arrays, Electrochim. Acta 93(2013)241-247. [15] F.C. Meng, G. Rong, X.L. Zhang, W.J. Huang, Facile hydrothermal synthesis of hierarchically structured γ-AlOOH for fast Congo red removal, Mater. Lett. 129(2014)114-117. [16] Z.J. Wang, H. Du, J.H. Gong, S.G. Yang, J.H. Ma, J. Xu, Facile synthesis of hierarchical flower-like γ-AlOOH films via hydrothermal route on quartz surface, Colloids Surf. A 450(2014)76-82. [17] S. Roy, S. Bardhan, K. Pal, S. Ghosh, P. Mandal, S. Das, S. Das, Crystallinity mediated variation in optical and electrical properties of hydrothermally synthesized boehmite (γ-AlOOH) nanoparticles, J. Alloys Compd. 763(2018)749-758. [18] H.M. Zhang, Y. Ruan, Y. Feng, M.H. Su, Z.H. Diao, D.Y. Chen, L.A. Hou, P.H. Lee, K. Shih, L.J. Kong, Solvent-free hydrothermal synthesis of gamma-aluminum oxide nanoparticles with selective adsorption of Congo red, J. Colloid Interface Sci. 536(2019)180-188. [19] J.A. Darr, J.Y. Zhang, N.M. Makwana, X.L. Weng, Continuous hydrothermal synthesis of inorganic nanoparticles:Applications and future directions, Chem. Rev. 117(17)(2017)11125-11238. [20] L.M. Wang, Y.F. Pan, Y.L. Li, Z.Y. Sui, J.S. Li, X.F. Xu, Destructive sorption of NF3 as a novel greenhouse gas over Al2O3@Mn2O3 sorbents with high surface area, Process. Saf. Environ. Prot. 162(2022)1082-1090. [21] L.M. Wang, Q. Gao, Y.F. Pan, X.F. Xu, Destructive sorption of NF3 as a novel greenhouse gas on Mn2O3/Al2O3 sorbents derived from calcination of MnOx/AlOOH/CS precursors, Mater. Chem. Phys. 280(2022)125810. |