[1] K. Khwaldia, N. Attour, J. Matthes, L. Beck, M. Schmid, Olive byproducts and their bioactive compounds as a valuable source for food packaging applications, Compr. Rev. Food Sci. Food Saf. 21(2)(2022)1218-1253. [2] W. Raza, J. Lee, N. Raza, Y.W. Luo, K.H. Kim, J.H. Yang, Removal of phenolic compounds from industrial waste water based on membrane-based technologies, J. Ind. Eng. Chem. 71(2019)1-18. [3] A. Chachvalvutikul, T. Luangwanta, B. Inceesungvorn, S. Kaowphong, Bismuth-rich oxyhalide (Bi7O9I3-Bi4O5Br2) solid-solution photocatalysts for the degradation of phenolic compounds under visible light, J. Colloid Interface Sci. 641(2023)595-609. [4] L. Xu, J. Li, W.B. Zeng, K. Liu, Y.B. Ma, L.P. Fang, C.L. Shi, Surfactant-assisted removal of 2, 4-dichlorophenol from soil by zero-valent Fe/Cu activated persulfate, Chin. J. Chem. Eng. 44(2022)447-455. [5] R. Karande, L. Debor, D. Salamanca, F. Bogdahn, K.H. Engesser, K. Buehler, A. Schmid, Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms, Biotechnol. Bioeng. 113(1)(2016)52-61. [6] L. Lv, M. Zhao, Y.N. Liu, Y.F. He, D.Q. Li, Fabrication of hydrophobic Pd/Al2O3-phosphoric acid via POAl bond for liquid hydrogenation reaction, Chin. J. Chem. Eng. 53(2023)232-242. [7] Y. Du, X. Chen, C.H. Liang, Selective electrocatalytic hydrogenation of phenols over ternary Pt3RuSn alloy, Mol. Catal. 535(2023)112831. [8] S.Q. Huang, X.M. Wu, W. Chen, T, Wang, Y. Wu, G.H. He, A bilateral electrochemical hydrogen pump reactor for 2-propanol dehydrogenation and phenol hydrogenation, Green Chem. 18(8)(2016)2353-2362. [9] L. Chen, A.P. van Muyden, X.J. Cui, G. Laurenczy, P.J. Dyson, Selective hydrogenation of lignin-derived compounds under mild conditions, Green Chem. 22(10)(2020)3069-3073. [10] P.J. Yan, P.F. Tian, K.J. Li, M.A. Cohen Stuart, J.Y. Wang, X.H. Yu, S.H. Zhou, Rh nanoclusters encaged in hollow mesoporous silica nanoreactors with enhanced catalytic performance for phenol selective hydrogenation, Chem. Eng. J. 397(2020)125484. [11] M.T. Gao, H. Tan, P.Q. Zhu, J. Zhang, H. Wang, X.C. Liu, Z.F. Zheng, Why phenol is selectively hydrogenated to cyclohexanol on Ru (0001):An experimental and theoretical study, Appl. Surf. Sci. 558(2021)149880. [12] L.L.R. Vono, C. Broicher, K. Philippot, L.M. Rossi, Tuning the selectivity of phenol hydrogenation using Pd, Rh and Ru nanoparticles supported on ceria-and titania-modified silicas, Catal. Today 381(2021)126-132. [13] Y.C. Shi, E.H. Xing, J.M. Zhang, Y.B. Xie, H. Zhao, Y.X. Sheng, H.B. Cao, Temperature-dependent selectivity of hydrogenation/hydrogenolysis during phenol conversion over Ni catalysts, ACS Sustainable Chem. Eng. 7(10)(2019)9464-9473. [14] Y.M. Lin, Y.Y. Zhang, R.F. Nie, K. Zhou, Y. Ma, M.J. Liu, D. Lu, Z.B. Bao, Q.W. Yang, Y.W. Yang, Q.L. Ren, Z.G. Zhang, Room-temperature hydrogenation of halogenated nitrobenzenes over metal-organic-framework-derived ultra-dispersed Ni stabilized by N-doped carbon nanoneedles, Front. Chem. Sci. Eng. 16(12)(2022)1782-1792. [15] Z.Z. Wei, Y.Q. Chen, J. Wang, D.F. Su, M.H. Tang, S.J. Mao, Y. Wang, Cobalt encapsulated in N-doped graphene layers:An efficient and stable catalyst for hydrogenation of quinoline compounds, ACS Catal. 6(9)(2016)5816-5822. [16] D. Xu, R.R. Liu, J.F. Li, H.C. Zhao, J.T. Ma, Z.P. Dong, Atomically dispersed Co-N4 sites anchored on N-doped carbon for aqueous phase transfer hydrogenation between nitroarenes and saturated N-heterocycles, Appl. Catal. B 299(2021)120681. [17] Z.Z. Wei, Y. Li, J. Wang, H.R. Li, Y. Wang, Chemoselective hydrogenation of phenol to cyclohexanol using heterogenized cobalt oxide catalysts, Chin. Chem. Lett. 29(6)(2018)815-818. [18] J.Z. Lu, Z.W. Ma, X.M. Wei, Q.S. Zhang, B. Hu, Support morphology-dependent catalytic activity of the Co/CeO2 catalyst for the aqueous-phase hydrogenation of phenol, New J. Chem. 44(22)(2020)9298-9303. [19] J.L. Long, K. Shen, L. Chen, Y.W. Li, Multimetal-MOF-derived transition metal alloy NPs embedded in an N-doped carbon matrix:Highly active catalysts for hydrogenation reactions, J. Mater. Chem. A 4(26)(2016)10254-10262. [20] A.Q. Li, K. Shen, J.Y. Chen, Z. Li, Y.W. Li, Highly selective hydrogenation of phenol to cyclohexanol over MOF-derived non-noble co-Ni@NC catalysts, Chem. Eng. Sci. 166(2017)66-76. [21] S. Wang, L.D. Yang, T.H. Zhu, N. Jiang, F. Li, H. Wang, C. Zhang, H. Song, Highly efficient hydrogenation of phenol to cyclohexanol over Ni-based catalysts derived from Ni-MOF-74, React. Chem. Eng. 7(1)(2021)170-180. [22] C. Yao, J.W. Chang, Y.W. Ding, C. Yu, J.S. Qiu, Glutamic acid-assisted hydrothermal recrystallization to configure bamboo-like carbon nanotubes for improved triiodide reduction, Chin. J. Chem. Eng. 37(2021)159-167. [23] Y.S. Wang, Y.J. Suo, J.T. Ren, Z. Wang, Z.Y. Yuan, Spatially isolated cobalt oxide sites derived from MOFs for direct propane dehydrogenation, J. Colloid Interface Sci. 594(2021)113-121. [24] W.J. Ma, N. Wang, Y.N. Fan, T.Z. Tong, X.J. Han, Y.C. Du, Non-radical-dominated catalytic degradation of bisphenol A by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate, Chem. Eng. J. 336(2018)721-731. [25] J.Y. Yu, G.X. Li, H. Liu, A.L. Wang, L.J. Yang, W.J. Zhou, Y.Y. Hu, B.L. Chu, Simultaneous water recovery and hydrogen production by bifunctional electrocatalyst of nitrogen-doped carbon nanotubes protected cobalt nanoparticles, Int. J. Hydrog. Energy 43(27)(2018)12110-12118. [26] Y.H. Shao, J. Xu, Z.X. Low, C.H. Chen, H. Jiang, R.Z. Chen, A simple and versatile synthesis strategy of hollow MOFs for CO2 separation and catalysis, Chem. Commun. 58(57)(2022)7944-7947. [27] L.X. Qi, J.J. Dai, Y.C. Liao, J. Tian, D.H. Sun, Tuning the electronic property of Pd nanoparticles by encapsulation within ZIF-67 shells towards enhanced performance in 1, 3-butadiene hydrogenation, Catal. Sci. Technol. 12(8)(2022)2519-2530. [28] Z.N. Shan, Y.B. Lou, J.X. Chen, Triblock copolymer-assisted synthesis of hierarchical ZIF-67 in the presence of 1, 3, 5-trimenthylbenzene, Inorg. Chem. Commun. 78(2017)74-77. [29] P. Zhang, Z.Y. Wang, Y. Zhang, J. Wang, W.Q. Li, L.N. Li, P.P. Zhang, C.D. Wei, S.D. Miao, Preparation of semi-hydrogenation catalysts by embedding Pd in layered double hydroxides nanocages via sacrificial template of ZIF-67, Appl. Catal. A 597(2020)117540. [30] A. Baghban, H. Ezedin Nejadian, S. Habibzadeh, F. Zokaee Ashtiani, Hydrogenation of pyrolysis gasoline by novel Ni-doped MOF derived catalysts from ZIF-8 and ZIF-67, Sci. Rep. 12(1)(2022)19428. [31] J.J. Li, W. Xia, J. Tang, H.B. Tan, J.Y. Wang, Y.V. Kaneti, Y. Bando, Tao Wang, J.P. He, Y. Yamauchi, MOF nanoleaves as new sacrificial templates for the fabrication of nanoporous Co-Nx/C electrocatalysts for oxygen reduction, Nanoscale Horiz. 4(4)(2019)1006-1013. [32] Z.Z. Wei, J. Wang, S.J. Mao, D.F. Su, H.Y. Jin, Y.H. Wang, F. Xu, H.R. Li, Y. Wang, In situ-generated Co0-Co3O4/N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes, ACS Catal. 5(8)(2015)4783-4789. [33] J.Y. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei, X.G. Yue, Z.H. Jiang, A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber, Nanoscale 8(16)(2016)8899-8909. [34] M.F. Liang, Y. Liu, H. Huang, L.C. Diao, J.L. Mu, Z.C. Miao, J. Zhou, S.P. Zhuo, A robust Ni@NCNT-C catalyst for highly efficient electrochemical CO2 reduction to CO over a wide potential range, Chem. Eng. J. 450(2022)137962. [35] Z.J. Li, X.D. Wu, X. Jiang, B.B. Shen, Z.S. Teng, D.M. Sun, G.T. Fu, Y.W. Tang, Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction, Adv. Powder Mater. 1(2)(2022)100020. [36] C. Chen, J. Hang, Z.Q. Wang, Z.H. Zheng, J.F. Gu, W. Sang, Y. Yuan, S. Chaemchuen, F. Verpoort, Rational design of cobalt catalysts embedded in N-Doped carbon for the alcohol dehydrogenation to carboxylic acids, Mol. Catal. 535(2023)112891. [37] T.T. Zhao, Y.J. Hui, Z.H. Li, Controllable preparation of ZIF-67 derived catalyst for CO2 methanation, Mol. Catal. 474(2019)110421. [38] W. Yang, Y.Y. Dong, J. Li, Q. Fu, L. Zhang, Templating synthesis of hierarchically meso/macroporous N-doped microalgae derived biocarbon as oxygen reduction reaction catalyst for microbial fuel cells, Int. J. Hydrog. Energy 46(2)(2021)2530-2542. [39] W. Chaikittisilp, M. Hu, H.J. Wang, H.S. Huang, T. Fujita, K.C.-W Wu, L.C. Chen, Y. Yamauchi, K. Ariga, Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes, Chem. Commun. 48(58)(2012)7259-7261. [40] Z.H. Li, R.J. Liu, C. Tang, Z.Y. Wang, X. Chen, Y.H. Jiang, C.Z. Wang, Y.C. Yuan, W.B. Wang, D.B. Wang, S.N. Chen, X.Y. Zhang, Q. Zhang, J.K. Jiang, Cobalt nanoparticles and atomic sites in nitrogen-doped carbon frameworks for highly sensitive sensing of hydrogen peroxide, Small 16(15)(2020)1902860. [41] Q.Q. Chen, H. Jiang, R.Z. Chen, Synthesis of ZIF-67 derived Co-based catalytic membrane for highly efficient reduction of p-nitrophenol, Chem. Eng. Sci. 248(2022)117160. [42] X.D. Chen, K. Shen, J.Y. Chen, B.B. Huang, D.N. Ding, L. Zhang, Y.W. Li, Rational design of hollow N/Co-doped carbon spheres from bimetal-ZIFs for high-efficiency electrocatalysis, Chem. Eng. J. 330(2017)736-745. [43] H.Q. Sun, C. Kwan, A. Suvorova, H.M. Ang, M.O. Tadé, S.B. Wang, Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals, Appl. Catal. B 154-155(2014)134-141. [44] Y.F. Yang, L.T. Jia, B. Hou, D.B. Li, J.G. Wang, Y.H. Sun, The correlation of interfacial interaction and catalytic performance of N-doped mesoporous carbon supported cobalt nanoparticles for fischer-tropsch synthesis, J. Phys. Chem. C 118(1)(2014)268-277. [45] W.N. Xie, B. Liu, Y.J. Liu, H.B. Chen, M. Yang, H.M. Li, Co/N-codoped porous carbons derived from poly (Schiff base)/Co (II) complex as ultrahighly efficient catalysts for CTH of nitroarenes, Appl. Catal. A:Gen. 623(2021)118249. [46] X.X. Wang, D. Cullen, Y. Pan, S. Hwang, M.Y. Wang, Z.X. Feng, J.Y. Wang, M. Engelhard, H.G. Zhang, Y.H. He, Y.Y. Shao, D. Su, K. More, J. Spendelow, G. Wu, Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells, Adv. Mater. 30(11)(2018)1706758.(2018). [47] H.J. Li, Y. He, T. He, S.M. Yan, X.Y. Ma, J.Y. Chen, ZIF-derived Co nanoparticle/N-doped CNTs composites embedded in N-doped carbon substrate as efficient electrocatalyst for hydrogen and oxygen evolution, J. Mater. Sci. 30(24)(2019)21388-21397. [48] B. Xia, Y. Yan, N. Li, H. Wu, X. Lou, X. Wang, A metal-organic framework-derived bifunctional oxygen electrocatalyst, Nat. Energy 1(2016)15006. [49] Y.C. Yin, X.F. Liu, X.J. Wei, R.H. Yu, J.L. Shui, Porous CNTs/Co composite derived from zeolitic imidazolate framework:A lightweight, ultrathin, and highly efficient electromagnetic wave absorber, ACS Appl. Mater. Interfaces 8(50)(2016)34686-34698. [50] P. Miao, K.Y. Cheng, H.Q. Li, J.W. Gu, K.J. Chen, S.Wang, D. Wang, T.X. Liu, B.B. Xu, J. Kong, Poly (dimethylsilylene) diacetylene-guided ZIF-based heterostructures for full Ku-band electromagnetic wave absorption, ACS Appl. Mater. Interfaces 11(19)(2019)17706-17713. [51] L. Song, J. Tang, T. Wang, C. Wu, Y. Ide, J.P. He, Y. Yamauchi, Self-supported ZIF-derived Co3O4 nanoparticles-decorated porous N-doped carbon fibers as oxygen reduction catalyst, Chem. Eur. J. 25(27)(2019)6807-6813. [52] X.R. Zhu, J.X. Zhang, H. Jiang, R.Z. Chen, Pd nanoparticles decorated ZIFs/polymer core-shell nanofibers derived hierarchically porous N-doped carbon for efficient catalytic conversion of phenol, Appl. Catal. A 634(2022)118538. [53] F. Yang, Z.H. Liu, X.D. Liu, A.D. Feng, B. Zhang, W. Yang, Y.F. Li, Cobalt single atoms anchored on nitrogen-doped porous carbon as an efficient catalyst for oxidation of silanes, Green Chem. 23(2)(2021)1026-1035. [54] Y.T. Zhang, S.Y. Li, N.N. Zhang, G. Lin, R.Q. Wang, M.N. Yang, K.K. Li, A carbon catalyst doped with Co and N derived from the metal-organic framework hybrid (ZIF-8@ZIF-67) for efficient oxygen reduction reaction, N. Carbon Mater. 38(1)(2023)200-209. [55] C.Q. Fan, H. Zhu, J.X. Zhang, H. Jiang, R.Z. Chen, Hollow Co@HCN derived from ZIF-67 as a highly efficient catalyst for hydrogenation of o-cresol to o-methyl cyclohexanol, Catal. Lett.(2023)1-15. [56] Y.B. Li, Y. Xu, L.L. Ma, T.J. Wang, Q. Zhang, G.Y. Chen, Effects of Supports and Promoters on in situ Hydrogenation of o-Cresol over Ni-based Catalysts. Chin. J. Chem. Phys. 27(6)(2014)697-703. [57] Z.Q. Yu, A.J. Wang, S. Liu, Y.L. Yao, Z.C. Sun, X. Li, Y.Y. Liu, Y. Wang, D.M. Camaioni, J.A. Lercher, Hydrodeoxygenation of phenolic compounds to cycloalkanes over supported nickel phosphides, Catal. Today 319(2019)48-56. [58] Z.Q. Yu, Y. Wang, Z.C. Sun, X. Li, A.J. Wang, D.M. Camaioni, J.A. Lercher, Ni3P as a high-performance catalytic phase for the hydrodeoxygenation of phenolic compounds, Green Chem. 20(3)(2018)609-619. [59] Y.Z. Xiang, X.N. Li, C.S. Lu, L. Ma, J.F. Yuan, F. Feng, Reaction performance of hydrogen from aqueous-phase reforming of methanol or ethanol in hydrogenation of phenol, Ind. Eng. Chem. Res. 50(6)(2011)3139-3144. [60] K.L. Deutsch, B.H. Shanks, Hydrodeoxygenation of lignin model compounds over a copper chromite catalyst, Appl. Catal. A 447-448(2012)144-150. [61] Q.S. Zhang, H.F. Li, P. Gao, L.L. Wang, PVP-NiB amorphous catalyst for selective hydrogenation of phenol and its derivatives, Chin. J. Catal. 35(11)(2014)1793-1799. [62] J. He, X.H. Lu, Y. Shen, R. Jing, R.F. Nie, D. Zhou, Q.H. Xia, Highly selective hydrogenation of phenol to cyclohexanol over nano silica supported Ni catalysts in aqueous medium, Mol. Catal. 440(2017)87-95. |