中国化学工程学报 ›› 2024, Vol. 66 ›› Issue (2): 310-331.DOI: 10.1016/j.cjche.2023.09.013
• Review • 上一篇
Yao Li1, Yuchun Zhang1, Zhiyu Li1, Huiyan Zhang2, Peng Fu1
收稿日期:
2023-06-06
修回日期:
2023-09-05
出版日期:
2024-02-28
发布日期:
2024-04-20
通讯作者:
Huiyan Zhang,E-mail:hyzhang@seu.edu.cn;Peng Fu,E-mail:fupeng@sdut.edu.cn
基金资助:
Yao Li1, Yuchun Zhang1, Zhiyu Li1, Huiyan Zhang2, Peng Fu1
Received:
2023-06-06
Revised:
2023-09-05
Online:
2024-02-28
Published:
2024-04-20
Contact:
Huiyan Zhang,E-mail:hyzhang@seu.edu.cn;Peng Fu,E-mail:fupeng@sdut.edu.cn
Supported by:
摘要: Biomass-to-ethylene glycol is an effective means to achieve high-value utilisation of cellulose but is hindered by low conversion efficiency and poor catalyst activity and stability. Glucose and cellobiose are derivatives of cellulose conversion to ethylene glycol, and it is found that studying the reaction process of both can help to understand the reaction mechanism of cellulose. It is desirable to develop a reusable, highly active catalyst to convert cellulose into ethylene glycol. This ideal catalyst might have one or more active sites described the conversion steps above. Here, we discuss the catalyst development of cellulose-to-ethylene glycol, including tungsten, tin, lanthanide, and other transition metal catalysts, and special attention is given to the reaction mechanism and kinetics for preparing ethylene glycol from cellulose, and the economic advantages of biomass-to-ethylene glycol are briefly introduced. The insights given in this review will facilitate further development of efficient catalysts, for addressing the global energy crisis and climate change related to the use of fossil fuels.
Yao Li, Yuchun Zhang, Zhiyu Li, Huiyan Zhang, Peng Fu. Reaction pathways and selectivity in the chemo-catalytic conversion of cellulose and its derivatives to ethylene glycol: A review[J]. 中国化学工程学报, 2024, 66(2): 310-331.
Yao Li, Yuchun Zhang, Zhiyu Li, Huiyan Zhang, Peng Fu. Reaction pathways and selectivity in the chemo-catalytic conversion of cellulose and its derivatives to ethylene glycol: A review[J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 310-331.
[1] J.F. Pang, M.Y. Zheng, R.Y. Sun, A.Q. Wang, X.D. Wang, T. Zhang, Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET, Green Chem. 18(2)(2016)342-359. [2] S. Soltanian, M. Aghbashlo, F. Almasi, H. Hosseinzadeh-Bandbafha, A.S. Nizami, Y.S. Ok, S.S. Lam, M. Tabatabaei, A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels, Energy Convers. Manag. 212(2020)112792. [3] J.K. Zhao, Y.J. Xu, W.Q. Wang, J. Griffin, D.H. Wang, Conversion of liquid hot water, acid and alkali pretreated industrial hemp biomasses to bioethanol, Bioresour. Technol. 309(2020)123383. [4] P. Sivagurunathan, G. Kumar, A. Mudhoo, E.R. Rene, G.D. Saratale, T. Kobayashi, K.Q. Xu, S.H. Kim, D.H. Kim, Fermentative hydrogen production using lignocellulose biomass:an overview of pre-treatment methods, inhibitor effects and detoxification experiences, Renew. Sustain. Energy Rev. 77(2017)28-42. [5] J.A. Geboers, S. Van de Vyver, R. Ooms, B.O. de Beeck, P.A. Jacobs, B.F. Sels, Chemocatalytic conversion of cellulose:opportunities, advances and pitfalls, Catal. Sci. Technol. 1(5)(2011)714-726. [6] N. Dahmen, I. Lewandowski, S. Zibek, A. Weidtmann, Integrated lignocellulosic value chains in a growing bioeconomy:status quo and perspectives, GCB Bioenergy 11(1)(2019)107-117. [7] A. Kumar, A. Rapoport, G. Kunze, S. Kumar, D. Singh, B. Singh, Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels:a review, Renew. Energy 160(2020)1228-1252. [8] B.R. Caes, M.J. Palte, R.T. Raines, Organocatalytic conversion of cellulose into a platform chemical, Chem. Sci. 4(1)(2013)196-199. [9] J. Shadbahr, F. Khan, Y. Zhang, Kinetic modeling and dynamic analysis of simultaneous saccharification and fermentation of cellulose to bioethanol, Energy Convers. Manag. 141(2017)236-243. [10] X.C. Li, T.Y. Guo, Q.N. Xia, X.H. Liu, Y.Q. Wang, One-pot catalytic transformation of lignocellulosic biomass into alkylcyclohexanes and polyols, ACS Sustainable Chem. Eng. 6(3)(2018)4390-4399. [11] G. Kumar, P. Sivagurunathan, B. Sen, A. Mudhoo, G. Davila-Vazquez, G.Y. Wang, S.H. Kim, Research and development perspectives of lignocellulose-based biohydrogen production, Int. Biodeterior. Biodegrad. 119(2017)225-238. [12] Y.P. Luo, Z. Li, X.L. Li, X.F. Liu, J.J. Fan, J.H. Clark, C.W. Hu, The production of furfural directly from hemicellulose in lignocellulosic biomass:a review, Catal. Today Off. 319(2019)14-24. [13] N. Ji, T. Zhang, M.Y. Zheng, A.Q. Wang, H. Wang, X.D. Wang, J.G. Chen, Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts, Angew. Chem., Int. Ed. Engl. 47(44)(2008)8510-8513. [14] B. Kumar, N. Bhardwaj, K. Agrawal, V. Chaturvedi, P. Verma, Current perspective on pretreatment technologies using lignocellulosic biomass:an emerging biorefinery concept, Fuel Process. Technol. 199(2020)106244. [15] L. Hu, L. Lin, Z. Wu, S.Y. Zhou, S.J. Liu, Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts, Appl. Catal., B 174-175(2015)225-243. [16] B. Yang, C.E. Wyman, Pretreatment:the key to unlocking low-cost cellulosic ethanol, Biofuels, Bioprod. Bioref. 2(1)(2008)26-40. [17] T.S.P. Souza, H.Y. Kawaguti, Cellulases, hemicellulases, and pectinases:applications in the food and beverage industry, Food Bioprocess Technol. 14(8)(2021)1446-1477. [18] Y. Noda, U. Wongsiriwan, C.S. Song, P. Prasassarakich, Y. Yeboah, Sequential combination of acid and base for conversion of cellulose, Energy Fuels 26(4)(2012)2376-2385. [19] M. Hara, T. Yoshida, A. Takagaki, T. Takata, J.N. Kondo, S. Hayashi, K. Domen, A carbon material as a strong protonic acid, Angew. Chem. 116(22)(2004)3015-3018. [20] S.G. Shen, C.Y. Wang, B. Cai, H.M. Li, Y. Han, T. Wang, H.F. Qin, Heterogeneous hydrolysis of cellulose into glucose over phenolic residue-derived solid acid, Fuel 113(2013)644-649. [21] S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups, J. Am. Chem. Soc. 130(38)(2008)12787-12793. [22] M.Y. Zheng, A.Q. Wang, N. Ji, J.F. Pang, X.D. Wang, T. Zhang, Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol, ChemSusChem 3(1)(2010)63-66. [23] Z.L. Guo, S.H. Lim, W. Chu, Y. Liu, A. Borgna, Highly efficient SiC-supported Ni-based catalysts with enhanced recycle stability for one-pot cellobiose hydrolytic hydrogenation to hexitols, ACS Sustainable Chem. Eng.(2020) acssuschemeng.0c02257. [24] Y.L. Cao, J.W. Wang, M.Q. Kang, Y.L. Zhu, Catalytic conversion of glucose and cellobiose to ethylene glycol over Ni-WO3/SBA-15 catalysts, RSC Adv. 5(110)(2015)90904-90912. [25] Z.J. Tai, J.Y. Zhang, A.Q. Wang, J.F. Pang, M.Y. Zheng, T. Zhang, Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of raney Ni and tungstic acid, ChemSusChem 6(4)(2013)652-658. [26] N. Ji, M.Y. Zheng, A.Q. Wang, T. Zhang, J.G. Chen, Nickel-promoted tungsten carbide catalysts for cellulose conversion:effect of preparation methods, ChemSusChem 5(5)(2012)939-944. [27] Y. Yang, W. Zhang, F. Yang, D.E. Brown, Y. Ren, S. Lee, D.H. Zeng, Q. Gao, X. Zhang, Versatile nickel-tungsten bimetallics/carbon nanofiber catalysts for direct conversion of cellulose to ethylene glycol, Green Chem. 18(14)(2016)3949-3955. [28] L.S. Ribeiro, A.L.F. Pires, J.J. de MeloÓrfão, M.F.R. Pereira, Paving the way towards an eco-and budget-friendly one-pot catalytic conversion of cellulose and lignocellulosic residues into ethylene glycol over Ni-W/CNT catalysts, Renew. Energy 200(2022)1008-1022. [29] M.Q. Li, Y.L. Ma, X.X. Ma, Y.G. Sun, Z. Song, Insight into the efficient catalytic conversion of biomass to EG and 1, 2-PG over W-Ni bimetallic catalyst, RSC Adv. 8(20)(2018)10907-10913. [30] F. Zaera, Designing sites in heterogeneous catalysis:are we reaching selectivities competitive with those of homogeneous catalysts?Chem. Rev. 122(9)(2022)8594-8757. [31] M.Y. Gu, Z. Shen, L. Yang, W.J. Dong, L. Kong, W. Zhang, B.Y. Peng, Y.L. Zhang, Reaction route selection for cellulose hydrogenolysis into C2/C3 glycols by ZnO-modified Ni-W/β-zeolite catalysts, Sci. Rep. 9(2019)11938. [32] L.L. Shao, J.C. Zhou, M. Zhang, Q.Y. Zhang, N. Wang, F.F. Zhu, K. Wang, N.X. Li, MOFs-derived hierarchical porous carbon confining the monodisperse Ni and defective WOx for efficient and stable hydrogenolysis of cellulose to ethylene glycol, Res. Chem. Intermed. 48(6)(2022)2489-2507. [33] Z.Q. Xiao, X.L. Wang, Q.Q. Yang, C. Xing, Q. Ge, X.K. Gai, J.W. Mao, J.B. Ji, Fabrication of immobilized nickel nanoclusters decorated by CxNy species for cellulose conversion to C2, 3 oxygenated compounds:rational design via typical C-and N-sources, J. Energy Chem. 50(2020)25-36. [34] Z.Q. Xiao, Q. Zhang, T.T. Chen, X.N. Wang, Y. Fan, Q. Ge, R. Zhai, R. Sun, J.B. Ji, J.W. Mao, Heterobimetallic catalysis for lignocellulose to ethylene glycol on nickel-tungsten catalysts:influenced by hydroxy groups, Fuel 230(2018)332-343. [35] N.X. Li, X. Liu, J.C. Zhou, Q.H. Ma, M.C. Liu, W.S. Chen, Enhanced Ni/W/Ti catalyst stability from Ti-O-W linkage for effective conversion of cellulose into ethylene glycol, ACS Sustainable Chem. Eng. 8(26)(2020)9650-9659. [36] X.L. Yang, Z.L. Li, M.Y. Guo, T. Zhao, X. Su, W. Jiang, G.T. Han, H.X. Ben, Synergistic effects of WO3 and NiCu bimetals for the One-Pot conversion of cellulose into ethylene glycol, Fuel 341(2023)127560. [37] P. Kashyap, S. Bhardwaj, V.P. Chodimella, A.K. Sinha, Carbon-based heterogeneous catalysts for conversion of cellulose and cellulosic feedstock, Biomass Convers. Biorefin.(2022)1-21. [38] K. Zhang, G.H. Yang, G.J. Lyu, Z.X. Jia, L.A. Lucia, J.C. Chen, One-pot solvothermal synthesis of graphene nanocomposites for catalytic conversion of cellulose to ethylene glycol, ACS Sustainable Chem. Eng. 7(13)(2019)11110-11117. [39] L.S. Ribeiro, N. Rey-Raap, J.L. Figueiredo, J.J. MeloÓrfão, M.F.R. Pereira, Glucose-based carbon materials as supports for the efficient catalytic transformation of cellulose directly to ethylene glycol, Cellulose 26(12)(2019)7337-7353. [40] H.Y. Huang, L.G. Chen, C.S. Gu, X.H. Zhang, J.G. Liu, Q. Zhang, C.G. Wang, L.L. Ma, Y.H. Liao, In-situ synthesis of Ru-WOx/biochar catalyst for conversion of cellulose toward ethylene glycol, SSRN Electron. J.(2022)8195-8211. [41] J.C. Chai, S.H. Zhu, Y.L. Cen, J. Guo, J.G. Wang, W.B. Fan, Effect of tungsten surface density of WO3-ZrO2 on its catalytic performance in hydrogenolysis of cellulose to ethylene glycol, RSC Adv 7(14)(2017)8567-8574. [42] Y.J. Weng, Y. Wang, M.W. Zhang, X.L. Wang, Q. Sun, S.F. Mu, H.Y. Wang, M.H. Fan, Y.L. Zhang, Selectively chemo-catalytic hydrogenolysis of cellulose to EG and EtOH over porous SiO2 supported tungsten catalysts, Catal. Today 407(2023)89-95.[43] L.S. Ribeiro, J.Órfão, J.J. de MeloÓrfão, Hydrolytic hydrogenation of cellulose to ethylene glycol over carbon nanotubes supported Ru-W bimetallic catalysts, Cellulose 25(4)(2018)2259-2272. [44] J.F. Pang, M.Y. Zheng, X.S. Li, J. Sebastian, Y. Jiang, Y. Zhao, A.Q. Wang, T. Zhang, Unlock the compact structure of lignocellulosic biomass by mild ball milling for ethylene glycol production, ACS Sustainable Chem. Eng. 7(1)(2019)679-687. [45] G.H. Zhao, M.Y. Zheng, A.Q. Wang, T. Zhang, Catalytic conversion of cellulose to ethylene glycol over tungsten phosphide catalysts, Chin. J. Catal. 31(8)(2010)928-932. [46] S. Sreekantan, A.A. Kirali, B. Marimuthu, Enhanced one-pot selective conversion of cellulose to ethylene glycol over NaZSM-5 supported metal catalysts, New J. Chem. 45(41)(2021)19244-19254. [47] M.S. Hamdy, M.A. Eissa, S.M.A.S. Keshk, New catalyst with multiple active sites for selective hydrogenolysis of cellulose to ethylene glycol, Green Chem 19(21)(2017)5144-5151. [48] Y. Yang, D.C. Ren, C.L. Shang, Z.Z. Ding, X.R. Luo, Site isolated Ru clusters and sulfoacids in a yolk-shell nanoreactor towards cellulose valorization to 1, 2-propylene glycol, Chem. Eng. J. 452(2023)139206. [49] N.X. Li, Y. Zheng, L.F. Wei, H.C. Teng, J.C. Zhou, Metal nanoparticles supported on WO3 nanosheets for highly selective hydrogenolysis of cellulose to ethylene glycol, Green Chem 19(3)(2017)682-691. [50] L. Zhao, Z.F. Sun, C.C. Zhang, J. Nan, N.Q. Ren, D.J. Lee, C. Chen, Advances in pretreatment of lignocellulosic biomass for bioenergy production:challenges and perspectives, Bioresour. Technol. 343(2022)126123. [51] Y. Liu, W. Zhang, H.C. Liu, Unraveling the active states of WO3-based catalysts in the selective conversion of cellulose to glycols, Chin. J. Catal. 46(2023)56-63. [52] J.J. Wiesfeld, P. Peršolja, F.A. Rollier, A.M. Elemans-Mehring, E.J.M. Hensen, Cellulose conversion to ethylene glycol by tungsten oxide-based catalysts, Mol. Catal. 473(2019)110400. [53] Y.H. Zhang, A.Q. Wang, T. Zhang, A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol, Chem. Commun. 46(6)(2010)862-864. [54] R. Bermejo-Deval, R. Gounder, M.E. Davis, Framework and extraframework tin sites in zeolite beta react glucose differently, ACS Catal. 2(12)(2012)2705-2713. [55] R.S. Assary, L.A. Curtiss, Theoretical study of 1, 2-hydride shift associated with the isomerization of glyceraldehyde to dihydroxy acetone by lewis acid active site models, J. Phys. Chem. A 115(31)(2011)8754-8760. [56] R.Y. Sun, M.Y. Zheng, J.F. Pang, X. Liu, J.H. Wang, X.L. Pan, A.Q. Wang, X.D. Wang, T. Zhang, Selectivity-switchable conversion of cellulose to glycols over Ni-Sn catalysts, ACS Catal. 6(1)(2016)191-201. [57] X.H. Liu, X.D. Liu, G.Y. Xu, Y. Zhang, C.G. Wang, Q. Lu, L.L. Ma, Highly efficient catalytic conversion of cellulose into acetol over Ni-Sn supported on nanosilica and the mechanism study, Green Chem. 21(20)(2019)5647-5656. [58] Z.Q. Xiao, J.W. Mao, C.J. Jiang, C.A. Xing, J.B. Ji, Y.J. Cheng, One-pot selective conversion of cellulose into low carbon polyols on nano-Sn based catalysts, J. Renew. Sustain. Energy 9(2)(2017)24703. [59] T.Y. Deng, H.C. Liu, Promoting effect of SnOx on selective conversion of cellulose to polyols over bimetallic Pt-SnOx/Al2O3 catalysts, Green Chem. 15(1)(2013)116-124. [60] H.Y. Wang, C.H. Zhu, Q.Y. Liu, J. Tan, C.G. Wang, Z. Liang, L.L. Ma, Selective conversion of cellulose to hydroxyacetone and 1-hydroxy-2-butanone with Sn-Ni bimetallic catalysts, ChemSusChem 12(10)(2019)2154-2160. [61] M.Y. Zheng, J.F. Pang, R.Y. Sun, A.Q. Wang, T. Zhang, Selectivity control for cellulose to diols:dancing on eggs, ACS Catal. 7(3)(2017)1939-1954. [62] R.Y. Sun, T.T. Wang, M.Y. Zheng, W.Q. Deng, J.F. Pang, A.Q. Wang, X.D. Wang, T. Zhang, Versatile nickel-lanthanum (III) catalyst for direct conversion of cellulose to glycols, ACS Catal. 5(2)(2015)874-883. [63] E. Girard, D. Delcroix, A. Cabiac, Catalytic conversion of cellulose to C2-C3 glycols by dual association of a homogeneous metallic salt and a perovskite-supported platinum catalyst, Catal. Sci. Technol. 6(14)(2016)5534-5542. [64] C.A. Li, G.Y. Xu, K. Li, C.G. Wang, Y. Zhang, Y. Fu, A weakly basic Co/CeOx catalytic system for one-pot conversion of cellulose to diols:kungfu on eggs, Chem. Commun. 55(53)(2019)7663-7666. [65] G.H. Zhao, M.Y. Zheng, J.Y. Zhang, A.Q. Wang, T. Zhang, Catalytic conversion of concentrated glucose to ethylene glycol with semicontinuous reaction system, Ind. Eng. Chem. Res. 52(28)(2013)9566-9572. [66] A.A. Kirali, S. Sreekantan, B. Marimuthu, Fabrication of mesoporous carbon supported Ni-Mo catalysts for the enhanced conversion of glucose to ethylene glycol, New J. Chem. 44(37)(2020)15958-15965. [67] J.F. Pang, M.Y. Zheng, X.S. Li, Y. Jiang, Y. Zhao, A.Q. Wang, J.H. Wang, X.D. Wang, T. Zhang, Selective conversion of concentrated glucose to 1, 2-propylene glycol and ethylene glycol by using RuSn/AC catalysts, Appl. Catal., B 239(2018)300-308. [68] M.X. Lv, Q.H. Xin, D.F. Yin, Z. Jia, C.Y. Yu, T. Wang, S.T. Yu, S.W. Liu, L. Li, Y. Liu, Magnetically recoverable bifunctional catalysts for the conversion of cellulose to 1,2-propylene glycol, ACS Sustain.Chem. Eng. 8(2020)3617-3625. [69] Y.F. Zan, G. Miao, H. Wang, L.Z. Kong, Y.P. Ding, Y.H. Sun, Revealing the roles of components in glucose selective hydrogenation into 1, 2-propanediol and ethylene glycol over Ni-MnOx-ZnO catalysts, J. Energy Chem. 38(2019)15-19. [70] Y. Liu, Y.L. Liu, Y. Zhang, The synergistic effects of Ru and WOx for aqueous-phase hydrogenation of glucose to lower diols, Appl. Catal., B 242(2019)100-108. [71] J.C. Ji, Y. Xu, Y. Liu, Y. Zhang, A nanosheet Ru/WO3 catalyst for efficient conversion of glucose to butanediol, Catal. Commun. 144(2020)106074. [72] Q.H. Xin, S.T. Yu, L. Jiang, D.F. Yin, L. Li, C.X. Xie, Q. Wu, H.L. Yu, Y.X. Liu, Y.E. Liu, S.W. Liu, Bifunctional catalyst with a yolk-shell structure catalyzes glucose to produce ethylene glycol, J. Phys. Chem. C 125(12)(2021)6632-6642. [73] C.W. Liu, Y.N. Shang, S. Wang, X. Liu, X.Z. Wang, J.Z. Gui, C.H. Zhang, Y.L. Zhu, Y.W. Li, Boron oxide modified bifunctional Cu/Al2O3 catalysts for the selective hydrogenolysis of glucose to 1, 2-propanediol, Mol. Catal. 485(2020)110514. [74] S. Sreekantan, C. Pratap Singh, S. Krishnamurty, B. Marimuthu, Investigation of the effect of zeolite supports and the role of W-species for one-pot catalytic conversion of cellulose to ethylene glycol:theoretical&experimental studies, Chem. 18(4)(2023):e202201202. [75] S.T. Yu, X.C. Cao, S.W. Liu, L. Li, Q. Wu, Production of ethylene glycol from direct catalytic conversion of cellulose over a binary catalyst of metal-loaded modified SBA-15 and phosphotungstic acid, RSC Adv. 8(44)(2018)24857-24865. [76] L. Yang, X.P. Yan, Q.W. Wang, Q. Wang, H.A. Xia, One-pot catalytic conversion of cellulose into polyols with Pt/CNTs catalysts, Carbohydr. Res. 404(2015)87-92. [77] P.A. Lazaridis, S.A. Karakoulia, C. Teodorescu, N. Apostol, D. Macovei, A. Panteli, A. Delimitis, S.M. Coman, V.I. Parvulescu, K.S. Triantafyllidis, High hexitols selectivity in cellulose hydrolytic hydrogenation over platinum (Pt) vs. ruthenium (Ru) catalysts supported on micro/mesoporous carbon, Appl. Catal., B 214(2017)1-14. [78] S.Q. Xu, X.P. Yan, Q. Bu, H.A. Xia, Catalytic conversion of cellulose into polyols using carbon-nanotube-supported monometallic Pd and bimetallic Pd-Fe catalysts, Cellulose 24(6)(2017)2403-2413. [79] S.N. Chen, F. Mao, S.M. Tang, Z. Yi, H.H. Zhang, J.L. She, B. Yang, C. Zhang, Y.C. Liu, Z.H. Fu, One-pot hydrolytic hydrogenation of carbohydrates to hexitols catalyzed by Ru loaded P and Si-containing hierarchical porous biochars with excellent catalytic efficiency, Cellulose 29(11)(2022)6039-6056. [80] A.R. Mankar, A. Modak, K.K. Pant, High yield synthesis of hexitols and ethylene glycol through one-pot hydrolytic hydrogenation of cellulose, Fuel Process. Technol. 218(2021)106847. [81] D.W. Chu, C. Zhao, Reduced oxygen-deficient CuWO4 with Ni catalyzed selective hydrogenolysis of cellulose to ethylene glycol, Catal. Today 351(2020)125-132. [82] B. Zhang, X.R. Li, Q.F. Wu, C. Zhang, Y.C. Yu, M.L. Lan, X. Wei, Z. Ying, T. Liu, G.F. Liang, F.Y. Zhao, Synthesis of Ni/mesoporous ZSM-5 for direct catalytic conversion of cellulose to hexitols:modulating the pore structure and acidic sites via a nanocrystalline cellulose template, Green Chem. 18(11)(2016)3315-3323. [83] T.T. Gao, Y.G. Sun, Y.B. Zhu, F. Lin, Y.D. Zhong, Y.Y. Li, W.X. Ji, Y.L. Ma, Ni-Based multifunctional catalysts derived from layered double hydroxides for the catalytic conversion of cellulose to polyols, New J. Chem. 46(33)(2022)16058-16067. [84] H.S. Xin, H.Y. Wang, S. Li, X.H. Hu, C.G. Wang, L.L. Ma, Q.Y. Liu, Efficient production of ethylene glycol from cellulose over Co@C catalysts combined with tungstic acid, Sustain. Energy Fuels 6(10)(2022)2602-2612. [85] P. Fu, S. Hu, L.S. Sun, J. Xiang, Q.Q. Chen, T. Yang, J.Y. Zhang, Release characteristics and formation mechanism of gas products during rice straw and maize stalk pyrolysis, Proc. CSEE 29(2)(2009)113-118. [86] J.Y. Zhang, X.F. Yang, B.L. Hou, A.Q. Wang, Z.L. Li, H. Wang, T. Zhang, Comparison of cellobiose and glucose transformation to ethylene glycol, Chin. J. Catal. 35(11)(2014)1811-1817. [87] Z.C. Tan, L. Shi, Y.F. Zan, G. Miao, S.L. Li, L.Z. Kong, S.G. Li, Y.H. Sun, Crucial role of support in glucose selective conversion into 1, 2-propanediol and ethylene glycol over Ni-based catalysts:a combined experimental and computational study, Appl. Catal., A 560(2018)28-36. [88] D.W. Chu, Process and Mechanism Study on Conversion of Cellulose to C2-C3 Alcohol/acid Chemicals, Ph.D, Shanghai:East China Normal University, 2021. [89] H.R. Yue, Y.J. Zhao, X.B. Ma, J.L. Gong, Ethylene glycol:properties, synthesis, and applications, Chem. Soc. Rev. 41(11)(2012)4218. [90] Z.L. Li, J.Y. Zhang, B.L. Hou, A.Q. Wang, Kinetic study of cellulose hydrolysis with tungsten-based acid catalysts, AlChE. J. 65(6)(2019) e16585. [91] X.C. Wang, F. Wu, S.X. Yao, Y.J. Jiang, J. Guan, X.D. Mu, Ni-Cu/ZnO-catalyzed hydrogenolysis of cellulose for the production of 1, 2-alkanediols in hot compressed water, Chem. Lett. 41(5)(2012)476-478. [92] I.C. Kim, S.D. Park, S. Kim, Effects of sulfates on the decomposition of cellobiose in supercritical water, Chem. Eng. Process 43(8)(2004)997-1005. [93] M. Sasaki, K. Goto, K. Tajima, T. Adschiri, K. Arai, Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water, Green Chem. 4(3)(2002)285-287. [94] J.X. Xi, D.Q. Ding, Y. Shao, X.H. Liu, G.Z. Lu, Y.Q. Wang, Production of ethylene glycol and its monoether derivative from cellulose, ACS Sustainable Chem. Eng. 2(10)(2014)2355-2362. [95] H.Y. Zhao, L.P. Zheng, X.W. Li, P. Chen, Z.Y. Hou, Hydrogenolysis of glycerol to 1, 2-propanediol over Cu-based catalysts:a short review, Catal. Today 355(2020)84-95. [96] Y.L. Cao, J.W. Wang, M.Q. Kang, Y.L. Zhu, Catalytic conversion of glucose and cellobiose into ethylene glycol over various tungsten-based catalysts, J. Fuel Chem. Technol. 44(7)(2016)845-852. [97] J. Yu, J.Z. Liang, X.P. Chen, L.L. Wang, X.J. Wei, Y.M. Qin, Y.Q. Li, Y.K. Ling, Reaction network and kinetics for the one-pot hydrogenolysis of cellulose to ethylene glycol over NiOx-WOy-Cu/MgAl2O4, React. Kinet. Mech. Catal. 133(1)(2021)55-71. [98] Y.C. Zhang, W.M. Yi, P. Fu, Z.H. Li, N.N. Wang, C.Y. Tian, Numerical simulation and experiment on catalytic upgrading of biomass pyrolysis vapors in V-shaped downer reactors, Bioresour. Technol. 274(2019)207-214. [99] Z. Usmani, M. Sharma, P. Gupta, Y. Karpichev, N. Gathergood, R. Bhat, V.K. Gupta, Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion, Bioresour. Technol. 304(2020)123003. [100] T.D.J. te Molder, S.R.A. Kersten, J.P. Lange, M.P. Ruiz, Ethylene glycol from lignocellulosic biomass:impact of lignin on catalytic hydrogenolysis, Ind. Eng. Chem. Res. 60(19)(2021)7043-7049. [101] X.L. Chen, Y.X. Zhang, J.Q. Mei, G.L. Zhao, Q. Lyu, X. Lyu, H.H. Lyu, L.J. Han, W.H. Xiao, Ball milling for cellulose depolymerization and alcoholysis to produce methyl levulinate at mild temperature, Fuel Process. Technol. 188(2019)129-136. [102] M. Almohalla, I. Rodriguez-Ramos, L.S. Ribeiro, J.J.M. Orfao, M.F.R. Pereira, A. Guerrero-Ruiz, Cooperative action of heteropolyacids and carbon supported Ru catalysts for the conversion of cellulose, Catal. Today 301(2018)65-71. [103] J.F. Pang, B. Zhang, Y. Jiang, Y. Zhao, C.Z. Li, M.Y. Zheng, T. Zhang, Complete conversion of lignocellulosic biomass to mixed organic acids and ethylene glycol via cascade steps, Green Chem. 23(6)(2021)2427-2436. [104] Q.Q. Zheng, D.Q. Zhang, P. Fu, A.X. Wang, Y.M. Sun, Z.Y. Li, Q.W. Fan, Insight into the fast pyrolysis of lignin:unraveling the role of volatile evolving and char structural evolution, Chem. Eng. J. 437(2022)135316. [105] G.X. Li, P.Z. Cui, Y.L. Wang, Z.Q. Liu, Z.Y. Zhu, S. Yang, Life cycle energy consumption and GHG emissions of biomass-to-hydrogen process in comparison with coal-to-hydrogen process, Energy 191(2020)116588. [106] Z.T. Zhao, J.Y. Jiang, M.Y. Zheng, F. Wang, Advancing development of biochemicals through the comprehensive evaluation of bio-ethylene glycol, Chem. Eng. J. 411(2021)128516. [107] Q.C. Yang, S.M. Xu, Q. Yang, D.W. Zhang, Z.W. Li, H.R. Zhou, S. Zhu, Optimal design and exergy analysis of biomass-to-ethylene glycol process, Bioresour. Technol. 316(2020)123972. [108] S.M. Xu, Z.W. Li, Q.C. Yang, G.Y. Chu, J.L. Zhang, D.W. Zhang, H.R. Zhou, M.L. Gao, Comparative life cycle assessment of energy consumption, pollutant emission, and cost analysis of coal/oil/biomass to ethylene glycol, ACS Sustain. Chem. Eng. 9(2021)15849-15860. [109] Y.J. Weng, X.L. Wang, Y.L. Zhang, Cellulosic ethanol production with bio-and chemo-catalytic methods, Trends Chem. 4(5)(2022)374-377. |
[1] | Jiangtao Cai, Qingfu Huang, Huan Chen, Tao Zhang, Bo Niu, Yayun Zhang, Donghui Long. Evaluating two stages of silicone-containing arylene resin oxidation via experiment and molecular simulation[J]. 中国化学工程学报, 2024, 66(2): 189-202. |
[2] | Xiaojing Liu, Ruohan Zhao, Hao Zhao, Zhimiao Wang, Fang Li, Wei Xue, Yanji Wang. Enhanced stability of nitrogen-doped carbon-supported palladium catalyst for oxidative carbonylation of phenol[J]. 中国化学工程学报, 2024, 65(1): 19-28. |
[3] | Chao Li, Shizhao Wang, Yunshan Wang, Xuebin An, Gang Yang, Yong Sun. Study on synergistic leaching of potassium and phosphorus from potassium feldspar and solid waste phosphogypsum via coupling reactions[J]. 中国化学工程学报, 2024, 65(1): 117-129. |
[4] | Donghui Li, Wenzhe Wu, Xue Ren, Xixi Zhao, Hongbing Song, Meng Xiao, Quanhong Zhu, Hengjun Gai, Tingting Huang. Enhanced activation of peroxymonosulfate by Fe/N co-doped ordered mesoporous carbon with dual active sites for efficient removal of m-cresol[J]. 中国化学工程学报, 2024, 65(1): 130-144. |
[5] | Li Qiu, Chao Li, Shu Zhang, Shuang Wang, Bin Li, Zhenhua Cui, Yonggui Tang, Obid Tursunov, Xun Hu. Importance of oxygen-containing functionalities and pore structures of biochar in catalyzing pyrolysis of homologous poplar[J]. 中国化学工程学报, 2024, 65(1): 200-211. |
[6] | Xin Liu, Lei Yang, Tao Wei, Shanping Liu, Beibei Xiao. Active MoS2-based electrode for green ammonia synthesis[J]. 中国化学工程学报, 2024, 65(1): 268-275. |
[7] | Haoyu Yao, Jiangcheng Li, Jiangyan Li, Xiangfeng Liang, Gang Wang, Haiyan Luo. Studies on polyoxymethylene dimethyl ethers production from dimethoxymethane and 1,3,5-trioxane over SO42-/ZrO2-TiO2[J]. 中国化学工程学报, 2023, 61(9): 24-36. |
[8] | Fangren Qian, Lishan Peng, Yujuan Zhuang, Lei Liu, Qingjun Chen. Direct atomic-level insight into oxygen reduction reaction on size-dependent Pt-based electrocatalysts from density functional theory calculations[J]. 中国化学工程学报, 2023, 61(9): 140-146. |
[9] | Dongdong Hu, Yinglei Wang, Chuan Xiao, Yifei Hu, Zhiyong Zhou, Zhongqi Ren. Studies on ammonium dinitramide and 3,4-diaminofurazan cocrystal for tuning the hygroscopicity[J]. 中国化学工程学报, 2023, 61(9): 157-164. |
[10] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method[J]. 中国化学工程学报, 2023, 60(8): 53-60. |
[11] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction[J]. 中国化学工程学报, 2023, 60(8): 165-172. |
[12] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol[J]. 中国化学工程学报, 2023, 60(8): 186-193. |
[13] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant[J]. 中国化学工程学报, 2023, 60(8): 228-234. |
[14] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion[J]. 中国化学工程学报, 2023, 59(7): 1-8. |
[15] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling[J]. 中国化学工程学报, 2023, 59(7): 105-117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||