[1] L.Q. Hu, K. Clark, T. Alebrahim, H.Q. Lin, Mixed matrix membranes for postcombustion carbon capture:From materials design to membrane engineering, J. Membr. Sci. 644(2022)120140. [2] G.N. Chen, T.L. Wang, G.R. Zhang, G.P. Liu, W.Q. Jin, Membrane materials targeting carbon capture and utilization, Adv. Membr. 2(2022)100025. [3] Q.H. Li, H.Y. Wu, Z. Wang, J.X. Wang, Analysis and optimal design of membrane processes for flue gas CO2 capture, Sep. Purif. Technol. 298(2022)121584. [4] W.J. Zheng, Z. Liu, R. Ding, Y. Dai, X.C. Li, X.H. Ruan, G.H. He, Constructing continuous and fast transport pathway by highly permeable polymer electrospun fibers in composite membrane to improve CO2 capture, Sep. Purif. Technol. 285(2022)120332. [5] H. Wang, W.J. Zheng, X.C. Yang, M.J. Ning, X.C. Li, Y. Xi, X.M. Yan, X. Zhang, Y. Dai, H.J. Liu, G.H. He, Pebax-based mixed matrix membranes derived from microporous carbon nanospheres for permeable and selective CO2 separation, Sep. Purif. Technol. 274(2021)119015. [6] U.W.R. Siagian, A. Raksajati, N.F. Himma, K. Khoiruddin, I.G. Wenten, Membrane-based carbon capture technologies:Membrane gas separation vs. membrane contactor, J. Nat. Gas Sci. Eng. 67(2019)172-195. [7] L. Shao, S. Quan, X.Q. Cheng, X.J. Chang, H.G. Sun, R.G. Wang, Developing crosslinked poly (ethylene oxide) membrane by the novel reaction system for H2 purification, Int. J. Hydrogen Energy 38(12)(2013)5122-5132. [8] Y. Pan, G.N. Chen, J.Y. Liu, J.H. Li, X. Chen, H.P. Zhu, G.P. Liu, G.R. Zhang, W.Q. Jin, PDMS thin-film composite membrane fabricated by ultraviolet crosslinking acryloyloxy-terminated monomers, J. Membr. Sci. 658(2022)120763. [9] Y.F. Ji, M.C. Zhang, K.C. Guan, J. Zhao, G.P. Liu, W.Q. Jin, High-performance CO2 capture through polymer-based ultrathin membranes, Adv. Funct. Mater. 29(33)(2019)1900735. [10] W.J. Guo, T.N. Tran, H. Mondal, S. Schaefer, L. Huang, H.Q. Lin, Superior CO2/N2 separation performance of highly branched poly (1,3 dioxolane) plasticized by polyethylene glycol, J. Membr. Sci. 648(2022)120352. [11] Y.S. Shi, J.C. Liang, B. Babu Shrestha, Z.G. Wang, Y.T. Zhang, J. Jin, Enhancing the CO2 plasticization resistance of thin polymeric membranes by designing metalepolymer complexes, Sep. Purif. Technol. 289(2022)120699. [12] S.T. Fan, M. Tan, W.T. Liu, B.J. Li, S. Zhang, MOF-layer composite polyurethane membrane increasing both selectivity and permeability:Pushing commercial rubbery polymer membranes to be attractive for CO2 separation, Sep. Purif. Technol. 297(2022)121452. [13] J.Y. Liu, Y. Pan, J.Y. Xu, Z.G. Wang, H.P. Zhu, G.P. Liu, J. Zhong, W.Q. Jin, Introducing amphipathic copolymer into intermediate layer to fabricate ultrathin Pebax composite membrane for efficient CO2 capture, J. Membr. Sci. 667(2023)121183. [14] N. Liu, J. Cheng, W. Hou, C. Yang, X. Yang, J.H. Zhou, Bottom-up synthesis of two-dimensional composite via CuBDC-ns growth on multilayered MoS2 to boost CO2 permeability and selectivity in Pebax-based mixed matrix membranes, Sep. Purif. Technol. 282(2022)120007. [15] H.P. Zhu, J.W. Yuan, J. Zhao, G.P. Liu, W.Q. Jin, Enhanced CO2/N2 separation performance by using dopamine/polyethyleneimine-grafted TiO2 nanoparticles filled PEBA mixed-matrix membranes, Sep. Purif. Technol. 214(2019)78-86. [16] J.W. Yuan, H.P. Zhu, J.J. Sun, Y.Y. Mao, G.P. Liu, W.Q. Jin, Novel ZIF-300 mixedmatrix membranes for efficient CO2 capture, ACS Appl. Mater. Interfaces 9(44)(2017)38575-38583. [17] J.J. Sun, Q.Q. Li, G.N. Chen, J.G. Duan, G.P. Liu, W.Q. Jin, MOF-801 incorporated PEBA mixed-matrix composite membranes for CO2 capture, Sep. Purif. Technol. 217(2019)229-239. [18] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320(1-2)(2008)390-400. [19] H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff:The trade-off between membrane permeability and selectivity, Science 356(6343)(2017) eaab0530. [20] G.P. Liu, W.Q. Jin, N.P. Xu, Two-dimensional-material membranes:A new family of high-performance separation membranes, Angew. Chem. Int. Ed. 55(43)(2016)13384-13397. [21] G.P. Liu, W.Q. Jin, N.P. Xu, Graphene-based membranes, Chem. Soc. Rev. 44(15)(2015)5016-5030. [22] L. Cheng, Y.Y. Song, H.M. Chen, G.Z. Liu, G.P. Liu, W.Q. Jin, g-C3N4 nanosheets with tunable affinity and sieving effect endowing polymeric membranes with enhanced CO2 capture property, Sep. Purif. Technol. 250(2020)117200. [23] G.Z. Liu, L. Cheng, G.N. Chen, F. Liang, G.P. Liu, W.Q. Jin, Pebax-based membrane filled with two-dimensional mxene nanosheets for efficient CO2 capture, Chem. Asian J. 15(15)(2020)2364-2370. [24] Z. Yuan, G. He, S.X. Li, R.P. Misra, M.S. Strano, D. Blankschtein, Gas separations using nanoporous atomically thin membranes:Recent theoretical, simulation, and experimental advances, Adv. Mater. 34(32)(2022) e2201472. [25] S. Mohsenpour, A.W. Ameen, S. Leaper, C. Skuse, F. Almansour, P.M. Budd, P. Gorgojo, PIM-1 membranes containing POSSegraphene oxide for CO2 separation, Sep. Purif. Technol. 298(2022)121447. [26] S.F. Wang, D. Mahalingam, B. Sutisna, S.P. Nunes, 2D-dual-spacing channel membranes for high performance organic solvent nanofiltration, J. Mater. Chem. A 7(19)(2019)11673-11682. [27] D.K. Mahalingam, S.F. Wang, S.P. Nunes, Stable graphene oxide cross-linked membranes for organic solvent nanofiltration, Ind. Eng. Chem. Res. 58(51)(2019)23106-23113. [28] S.F. Wang, L.X. Yang, G.W. He, B.B. Shi, Y.F. Li, H. Wu, R.N. Zhang, S. Nunes, Z.Y. Jiang, Two-dimensional nanochannel membranes for molecular and ionic separations, Chem. Soc. Rev. 49(4)(2020)1071-1089. [29] L. Cao, X.Y. He, Z.Y. Jiang, X.Q. Li, Y.F. Li, Y.X. Ren, L.X. Yang, H. Wu, Channelfacilitated molecule and ion transport across polymer composite membranes, Chem. Soc. Rev. 46(22)(2017)6725-6745. [30] J.Y. Zhu, J.W. Hou, A. Uliana, Y.T. Zhang, M.M. Tian, B. Van der Bruggen, The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes, J. Mater. Chem. A 6(9)(2018)3773-3792. [31] J. Shen, M.C. Zhang, G.P. Liu, W.Q. Jin, Facile tailoring of the two-dimensional graphene oxide channels for gas separation, RSC Adv. 6(59)(2016)54281-54285. [32] X. Zhu, C.C. Tian, C.L. Do-Thanh, S. Dai, Two-dimensional materials as prospective scaffolds for mixed-matrix membrane-based CO2 separation, ChemSusChem 10(17)(2017)3304-3316. [33] J. Shen, G.P. Liu, K. Huang, W.Q. Jin, K.R. Lee, N.P. Xu, Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture, Angew. Chem. Int. Ed Engl. 54(2)(2015)578-582. [34] Y.Y. Wang, Z.H. Niu, Y.Y. Dai, S.Y. Zhong, J. Li, Efficient CO2 separation by ionic liquid nanoconfined in ultra-thin TCOH@Pebax-1657 MMM, Sep. Purif. Technol. 325(2023)124667. [35] P.Y. Li, K. Shen, T.H. Zhang, S.P. Ding, X.F. Wang, High-performance polyamide composite membranes via double-interfacial polymerizations on a nanofibrous substrate for pervaporation dehydration, Sep. Purif. Technol. 257(2021)117927. [36] W. Yave, A. Car, J. Wind, K.V. Peinemann, Nanometric thin film membranes manufactured on square meter scale:Ultra-thin films for CO2 capture, Nanotechnology 21(39)(2010)395301. [37] J. Kim, Q. Fu, K. Xie, J.M.P. Scofield, S.E. Kentish, G.G. Qiao, CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture, J. Membr. Sci. 515(2016)54-62. [38] T. Li, Y.C. Pan, K.V. Peinemann, Z.P. Lai, Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers, J. Membr. Sci. 425-426(2013)235-242. [39] S.N. Wijenayake, N.P. Panapitiya, S.H. Versteeg, C.N. Nguyen, S. Goel, K.J. Balkus Jr., I.H. Musselman, J.P. Ferraris, Surface cross-linking of ZIF-8/polyimide mixed matrix membranes (MMMs) for gas separation, Ind. Eng. Chem. Res. 52(21)(2013)6991-7001. [40] L. Huang, H.Q. Lin, Engineering sub-nanometer channels in two-dimensional materials for membrane gas separation, Membranes 8(4)(2018)100. [41] Y.G. Seol, T.Q. Trung, O.J. Yoon, I.Y. Sohn, N.E. Lee, Nanocomposites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes, J. Mater. Chem. 22(45)(2012)23759-23766. [42] N. Ahmad Daud, B.W. Chieng, N.A. Ibrahim, Z.A. Talib, E.N. Muhamad, Z.Z. Abidin, Functionalizing graphene oxide with alkylamine by gamma-ray irradiation method, Nanomaterials 7(6)(2017)135. [43] M. Rozenberg, A. Loewenschuss, Y. Marcus, An empirical correlation between stretching vibration redshift and hydrogen bond length, Phys. Chem. Chem. Phys. 2(12)(2000)2699-2702. [44] J.E. Shen, M.C. Zhang, G.P. Liu, K.C. Guan, W.Q. Jin, Size effects of graphene oxide on mixed matrix membranes for CO2 separation, AIChE J. 62(8)(2016)2843-2852. [45] R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A. K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes, Science 343(6172)(2014)752-754. [46] Z.Y. Lin, Y.G. Yao, Z. Li, Y. Liu, Z. Li, C.P. Wong, Solvent-assisted thermal reduction of graphite oxide, J. Phys. Chem. C 114(35)(2010)14819-14825. [47] Z. Yang, Y.J. Sun, F. Ma, Interlayer spacing of multilayer graphene oxide:Influences of oxygen-containing group density, thickness, temperature and strain, Appl. Surf. Sci. 529(2020)147075. [48] G.Y. Dong, J.W. Hou, J. Wang, Y.T. Zhang, V. Chen, J.D. Liu, Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes, J. Membr. Sci. 520(2016)860-868. [49] L.J. Wang, Y. Li, S.G. Li, P.F. Ji, C.Z. Jiang, Preparation of composite poly (ether block amide) membrane for CO2 capture, J. Energy Chem. 23(6)(2014)717-725. [50] G.J. Huang, A.P. Isfahani, A. Muchtar, K. Sakurai, B.B. Shrestha, D.T. Qin, D. Yamaguchi, E. Sivaniah, B. Ghalei, Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture, J. Membr. Sci. 565(2018)370-379. [51] G.Q. Li, W. Kujawski, K. Knozowska, J. Kujawa, Thin film mixed matrix hollow fiber membrane fabricated by incorporation of amine functionalized metaleorganic framework for CO2/N2 separation, Materials 14(12)(2021)3366. [52] J.M.P. Scofield, P.A. Gurr, J. Kim, Q. Fu, S.E. Kentish, G.G. Qiao, Development of novel fluorinated additives for high performance CO2 separation thin-film composite membranes, J. Membr. Sci. 499(2016)191-200. [53] Q. Fu, E.H.H. Wong, J. Kim, J.M.P. Scofield, P.A. Gurr, S.E. Kentish, G.G. Qiao, The effect of soft nanoparticles morphologies on thin film composite membrane performance, J. Mater. Chem. A 2(42)(2014)17751-17756. [54] W. Fam, J. Mansouri, H.Y. Li, V. Chen, Improving CO2 separation performance of thin film composite hollow fiber with Pebax®1657/ionic liquid gel membranes, J. Membr. Sci. 537(2017)54-68. [55] D. Zhao, Y.D. Wu, J.Z. Ren, H. Li, Y.T. Qiu, M.C. Deng, Improved CO2 separation performance of composite membrane with the aids of low-temperature plasma treatment, J. Membr. Sci. 570-571(2019)184-193. [56] P.D. Sutrisna, J.W. Hou, H.Y. Li, Y.T. Zhang, V. Chen, Improved operational stability of Pebax-based gas separation membranes with ZIF-8:A comparative study of flat sheet and composite hollow fibre membranes, J. Membr. Sci. 524(2017)266-279. [57] I. Khalilinejad, A. Kargari, H. Sanaeepur, Preparation and characterization of (Pebax 1657+ silica nanoparticle)/PVC mixed matrix composite membrane for CO2/N2 separation, Chem. Pap. 71(4)(2017)803-818. |