[1] S.Y. Ren, Z.H. Wu, Q.X. Guo, B.J. Shen, Zeolites as shape-selective catalysts: Highly selective synthesis of vanillin from reimer-tiemann reaction of guaiacol and chloroform, Catal. Lett. 145 (2) (2015) 712-714. [2] S. Dabral, J.G. Hernandez, P.C.J. Kamer, C. Bolm, Organocatalytic chemoselective primary alcohol oxidation and subsequent cleavage of lignin model compounds and lignin, ChemSusChem 10 (13) (2017) 2707-2713. [3] A.M. Truscello, C. Gambarotti, M. Lauria, S. Auricchio, G. Leonardi, S.U. Shisodia, A. Citterio, One-pot synthesis of aryloxypropanediols from glycerol: Towards valuable chemicals from renewable sources, Green Chem. 15 (3) (2013) 625-628. [4] J. Chen, W. Shum, A practical synthetic route to enantiopure 3-aryloxy-1, 2-propanediols from chiral glycidol, Tetrahedron Lett. 36 (14) (1995) 2379-2380. [5] Y.Q. Cao, B.G. Pei, Etherification of phenols catalysed by solid-liquid phase transfer catalyst PEG400 without solvent, Synth. Commun. 30 (10) (2000) 1759-1766. [6] A.R. Massah, M. Mosharafian, A.R. Momeni, H. Aliyan, H.J. Naghash, M. Adibnejad, Solvent-free williamson synthesis: An efficient, simple, and convenient method for chemoselective etherification of phenols and bisphenols, Synth. Commun. 37 (11) (2007) 1807-1815. [7] A. Thibon, J.F. Bartoli, R. Guillot, J. Sainton, M. Martinho, D. Mansuy, F. Banse, Non-heme iron polyazadentate complexes as catalysts for aromatic hydroxylation by H2O2: Particular efficiency of tetrakis(2-pyridylmethyl) ethylenediamine-iron(II) complexes, J. Mol. Catal. A Chem. 287 (1-2) (2008) 115-120. [8] D.B. Zhao, N.J. Wu, S. Zhang, P.H. Xi, X.Y. Su, J.B. Lan, J.S. You, Synthesis of phenol, aromatic ether, and benzofuran derivatives by copper-catalyzed hydroxylation of aryl halides, Angew. Chem. Int. Ed Engl. 48 (46) (2009) 8729-8732. [9] K.W. Anderson, T. Ikawa, R.E. Tundel, S.L. Buchwald, The selective reaction of aryl halides with KOH: Synthesis of phenols, aromatic ethers, and benzofurans, J. Am. Chem. Soc. 128 (33) (2006) 10694-10695. [10] J.M. Chen, T.J. Yuan, W.Y. Hao, M.Z. Cai, Simple and efficient CuI/PEG-400 system for hydroxylation of aryl halides with potassium hydroxide, Catal. Commun. 12 (15) (2011) 1463-1465. [11] M.B. Talawar, T.M. Jyothi, P.D. Sawant, T. Raja, B.S. Rao, Calcined Mg-Al hydrotalcite as an efficient catalyst for the synthesis of guaiacol, Green Chem. 2 (6) (2000) 266-268. [12] M.Y. Lui, K.S. Lokare, E. Hemming, J.N.G. Stanley, A. Perosa, M. Selva, A.F. Masters, T. Maschmeyer, Microwave-assisted methylation of dihydroxybenzene derivatives with dimethyl carbonate, RSC Adv. 6 (63) (2016) 58443-58451. [13] A. Dhakshinamoorthy, A. Sharmila, K. Pitchumani, Layered double hydroxide-supported L-methionine-catalyzed chemoselective O-methylation of phenols and esterification of carboxylic acids with dimethyl carbonate: A “green” protocol, Chemistry 16 (4) (2010) 1128-1132. [14] X.M. Zhu, X.M. Li, X.J. Zou, Y.L. Wang, M.J. Jia, W.X. Zhang, Supported ammonium metatungstate as highly efficient catalysts for the vapour-phase O-methylation of catechol with methanol, Catal. Commun. 7 (8) (2006) 579-582. [15] S. Ouk, S. Thiebaud, E. Borredon, P. Le Gars, Dimethyl carbonate and phenols to alkyl aryl ethers via clean synthesis, Green Chem. 4 (5) (2002) 431-435. [16] A.A. Jafari, A. Khodadadi, Y. Mortazavi, Vapor-phase selective o-alkylation of catechol with methanol over lanthanum phosphate and its modified catalysts with Ti and Cs, J. Mol. Catal. A Chem. 372 (2013) 79-83. [17] X.Z. Liao, Z. Zhou, Z.L. Wang, X.J. Zou, G. Liu, M.J. Jia, W.X. Zhang, Preformed precursor of microporous aluminophosphate coating on mesoporous SBA-15: Synthesis, characterization, and catalytic property for selective O-methylation of catechol, J. Colloid Interface Sci. 308 (1) (2007) 176-181. [18] T. Fenlon, S. Chaturvedula, D. Riedel, S. Ruedunauer, R. Pelzer, Method for producing an aroma substance, U.S. Pat, 15/509, 238 (2017). [19] H.B. Chen, J.P. Li, J. Li, Y. Li, W.Q. Hua, J.S. Ding, A preparation method of guaiacol, China Pat., 103709018A (2014). [20] G.F. Zhu, M.H. Chen, A method for producing guaiacol, China Pat., 107235832A (2017). [21] P. Zhang, C.H. Liu, L. Chen, J.M. Chen, Y.J. Guan, P. Wu, Factors influencing the activity of SiO2 supported bimetal Pd-Ni catalyst for hydrogenation of α-angelica lactone: Oxidation state, particle size, and solvents, J. Catal. 351 (2017) 10-18. [22] C. Fan, Y.A. Zhu, Y. Xu, Y. Zhou, X.G. Zhou, D. Chen, Origin of synergistic effect over Ni-based bimetallic surfaces: A density functional theory study, J. Chem. Phys. 137 (1) (2012) 014703. [23] M. Mavrikakis, B. Hammer, J.K. Noerskov, Effect of strain on the reactivity of metal surfaces, Phys. Rev. Lett. 81 (13) (1998) 2819-2822. [24] A.V. Kirilin, A.V. Tokarev, H. Manyar, C. Hardacre, T. Salmi, J.P. Mikkola, D.Y. Murzin, Aqueous phase reforming of xylitol over Pt-Re bimetallic catalyst: Effect of the Re addition, Catal. Today 223 (2014) 97-107. [25] X.L. Li, B.Z. Li, M.H. Cheng, Y.K. Du, X.M. Wang, P. Yang, Catalytic hydrogenation of phenyl aldehydes using bimetallic Pt/Pd and Pt/Au nanoparticles stabilized by cubic silsesquioxanes, J. Mol. Catal. A Chem. 284 (1-2) (2008) 1-7. [26] X.B. Zhang, Z.M. Li, W. Pei, G. Li, W. Liu, P.F. Du, Z. Wang, Z.X. Qin, H.F. Qi, X.Y. Liu, S. Zhou, J.J. Zhao, B. Yang, W.J. Shen, Crystal-phase-mediated restructuring of Pt on TiO2 with tunable reactivity: Redispersion versus reshaping, ACS Catal. 12 (6) (2022) 3634-3643. [27] V. Polshettiwar, D. Cha, X.X. Zhang, J.M. Basset, Cover picture: High-surface-area silica nanospheres (KCC-1) with a fibrous morphology (angew. chem. int. Ed. 50/2010), Angew. Chem. Int. Ed. 49 (50) (2010) 9539. [28] Z.P. Dong, X. Le, X.L. Li, W. Zhang, C.X. Dong, J.T. Ma, Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline, Appl. Catal. B Environ. 158-159 (2014) 129-135. [29] O. Hinrichsen, T. Genger, M. Muhler, Chemisorption of N2O and H2 for the surface determination of copper catalysts, Chem. Eng. Technol. 23 (11) (2000) 956-959. [30] L.F. Wang, H. Chen, M.H. Yuan, S. Rivillon, E.H. Klingenberg, J.X. Li, R.T. Yang, Selective catalytic reduction of nitric oxide by hydrogen over Zn-ZSM-5 and Pd and Pd/Ru based catalysts, Appl. Catal. B Environ. 152-153 (2014) 162-171. [31] J.T. Miller, B.L. Meyers, M.K. Barr, F.S. Modica, D.C. Koningsberger, Hydrogen temperature-programmed desorptions in PlatinumCatalysts: Decomposition and isotopic exchange by SpilloverHydrogen of chemisorbed ammonia, J. Catal. 159 (1) (1996) 41-49. [32] B. Pawelec, R. Mariscal, R.M. Navarro, S. van Bokhorst, S. Rojas, J.L.G. Fierro, Hydrogenation of aromatics over supported Pt-Pd catalysts, Appl. Catal. A Gen. 225 (1-2) (2002) 223-237. [33] S.X. Xia, Z.L. Yuan, L.N. Wang, P. Chen, Z.Y. Hou, Hydrogenolysis of glycerol on bimetallic Pd-Cu/solid-base catalysts prepared via layered double hydroxides precursors, Appl. Catal. A Gen. 403 (1-2) (2011) 173-182. [34] C. Vandergrift, Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles, J. Catal. 131 (1) (1991) 178-189. [35] S. Velu, S. Gangwal, Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption, Solid State Ion. 177 (7-8) (2006) 803-811. [36] H.L. Liu, Z.W. Huang, H.X. Kang, X.M. Li, C.G. Xia, J. Chen, H.C. Liu, Efficient bimetallic NiCu-SiO2 catalysts for selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol, Appl. Catal. B Environ. 220 (2018) 251-263. [37] B.H. Chen, W. Liu, A. Li, Y.J. Liu, Z.S. Chao, A simple and convenient approach for preparing core-shell-like silica@nickel species nanoparticles: Highly efficient and stable catalyst for the dehydrogenation of 1, 2-cyclohexanediol to catechol, Dalton Trans. 44 (3) (2015) 1023-1038. [38] H.J. Guan, C. Chao, W.X. Kong, Z.G. Hu, Y.F. Zhao, S.G. Yuan, B. Zhang, Magnetic porous PtNi/SiO2 nanofibers for catalytic hydrogenation of p-nitrophenol, J. Nanopart. Res. 19 (6) (2017) 187. [39] S.S. Mahapatra, J. Datta, Characterization of Pt-Pd/C electrocatalyst for methanol oxidation in alkaline medium, Int. J. Electrochem. 2011 (2011) 563495. [40] L.P. Wu, Z.Y. Liu, M. Xu, J. Zhang, X.Y. Yang, Y.D. Huang, J. Lin, D.M. Sun, L. Xu, Y.W. Tang, Facile synthesis of ultrathin Pd-Pt alloy nanowires as highly active and durable catalysts for oxygen reduction reaction, Int. J. Hydrog. Energy 41 (16) (2016) 6805-6813. [41] J. Lif, M. Skoglundh, L. Lowendahl, Sintering of nickel particles supported on γ-alumina in ammonia, Appl. Catal. A Gen. 228 (1-2) (2002) 145-154. [42] H. Jiang, H. Yang, R. Hawkins, Z. Ring, Effect of palladium on sulfur resistance in Pt-Pd bimetallic catalysts, Catal. Today 125 (3-4) (2007) 282-290. [43] G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Surface Area and pore texture of catalysts, Catal. Today 41 (1-3) (1998) 207-219. [44] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (9-10) (2015) 1051-1069. [45] H.J. Qiu, X.C. Dong, B. Sana, T. Peng, D. Paramelle, P. Chen, S. Lim, Ferritin-templated synthesis and self-assembly of Pt nanoparticles on a monolithic porous graphene network for electrocatalysis in fuel cells, ACS Appl. Mater. Interfaces 5 (3) (2013) 782-787. [46] M.H. Luo, P. Lu, W.F. Yao, C.P. Huang, Q.J. Xu, Q. Wu, Y. Kuwahara, H. Yamashita, Shape and composition effects on photocatalytic hydrogen production for Pt-Pd alloy cocatalysts, ACS Appl. Mater. Interfaces 8 (32) (2016) 20667-20674. [47] X.M. Chen, G.H. Wu, J.M. Chen, X. Chen, Z.X. Xie, X.R. Wang, Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide, J. Am. Chem. Soc. 133 (11) (2011) 3693-3695. [48] F.F. Ren, H.W. Wang, C.Y. Zhai, M.S. Zhu, R.R. Yue, Y.K. Du, P. Yang, J.K. Xu, W.S. Lu, Clean method for the synthesis of reduced graphene oxide-supported PtPd alloys with high electrocatalytic activity for ethanol oxidation in alkaline medium, ACS Appl. Mater. Interfaces 6 (5) (2014) 3607-3614. [49] G.L. Zhang, C.D. Huang, R.J. Qin, Z.C. Shao, D. An, W. Zhang, Y.X. Wang, Uniform Pd-Pt alloy nanoparticles supported on graphite nanoplatelets with high electrocatalytic activity towards methanol oxidation, J. Mater. Chem. A 3 (9) (2015) 5204-5211. [50] Q.Q. Guan, C.W. Zhu, Y. Lin, E.I. Vovk, X.H. Zhou, Y. Yang, H.C. Yu, L.N. Cao, H.W. Wang, X.H. Zhang, X.Y. Liu, M.K. Zhang, S.Q. Wei, W.X. Li, J.L. Lu, Bimetallic monolayer catalyst breaks the activity-selectivity trade-off on metal particle size for efficient chemoselective hydrogenations, Nat. Catal. 4 (2021) 840-849. [51] D.L. Zhang, B. Zhaorigetu, Y.S. Bao, Supported palladium nanoparticles catalyzed ortho-directed C-C coupling reaction via a Pd0/PdII/PdIV catalytic cycle, J. Phys. Chem. C 119 (35) (2015) 20426-20432. [52] S. Peng, S. Liu, Q. Chen, S.B. Han, G. Li, W.J. Shen, Silica-confined Pt3Sn clusters for propane dehydrogenation, Ind. Eng. Chem. Res. 62 (33) (2023) 12915-12924. [53] X.J. Wei, Y.J. Zhou, X.N. Sun, F.H. Jiang, J.T. Zhang, Z.Y. Wu, F. Wang, G. Li, Hydrogenation of pentenal over supported Pt nanoparticles: Influence of Lewis-acid sites in the conversion pathway, New J. Chem. 45 (40) (2021) 18881-18887. [54] S. Guo, G.M. Zhang, Z.K. Han, S.Y. Zhang, D. Sarker, W.W. Xu, X.L. Pan, G. Li, A. Baiker, Synergistic effects of ternary PdO-CeO2-OMS-2 catalyst afford high catalytic performance and stability in the reduction of NO with CO, ACS Appl. Mater. Interfaces 13 (1) (2021) 622-630. [55] H.L. Gao, S.J. Liao, Z.X. Liang, H.G. Liang, F. Luo, Anodic oxidation of ethanol on core-shell structured Ru@PtPd/C catalyst in alkaline media, J. Power Sources 196 (15) (2011) 6138-6143. [56] J. Xu, L.K. Ouyang, G.J. Da, Q.Q. Song, X.J. Yang, Y.F. Han, Pt promotional effects on Pd-Pt alloy catalysts for hydrogen peroxide synthesis directly from hydrogen and oxygen, J. Catal. 285 (1) (2012) 74-82. [57] S.Y. Wang, F. Yang, S.P. Jiang, S.L. Chen, X. Wang, Tuning the electrocatalytic activity of Pt nanoparticles on carbon nanotubes via surface functionalization, Electrochem. Commun. 12 (11) (2010) 1646-1649. [58] L. Menendez-Rodriguez, E. Tomas-Mendivil, J. Francos, C. Najera, P. Crochet, V. Cadierno, Palladium(ii) complexes with a phosphino-oxime ligand: Synthesis, structure and applications to the catalytic rearrangement and dehydration of aldoximes, Catal. Sci. Technol. 5 (7) (2015) 3754-3761. |