[1] H.R. Yue, Y.J. Zhao, X.B. Ma, J.L. Gong, Ethylene glycol: properties, synthesis, and applications, Chem. Soc. Rev. 41 (11) (2012) 4218-4244. [2] Q. Yang, Q.C. Yang, S.M. Xu, S. Zhu, D.W. Zhang, Technoeconomic and environmental analysis of ethylene glycol production from coal and natural gas compared with oil-based production, J. Clean. Prod. 273 (2020) 123120. [3] N.K. Gor, P. Chinthala, A. Das, P.D. Vaidya, An overview on mono-ethylene glycol synthesis via n CO n coupling reaction-Catalysts, kinetics and reaction pathways, Can. J. Chem. Eng. 101 (7) (2023) 4054-4075. [4] H.M. Qian, G.B. Song, L. Lv, Y.L. Cheng, L. Zhang, J.W. Chen, The comparative life-cycle environmental effects of chemical feedstock change driven by energy system transition: a case study from China’s ethylene glycol industry, J. Clean. Prod. 355 (2022) 131764. [5] H.Y. Song, R.H. Jin, M.R. Kang, J. Chen, Progress in synthesis of ethylene glycol through C1 chemical industry routes, Chin. J. Catal. 34 (6) (2013) 1035-1050. [6] Z.Y. Chi, L.Q.Q. Yang, X.G. Li, Y.L. He, W.D. Xiao, CO oxidative coupling with nitrite to oxalate over palladium catalyst: a comprehensive kinetic modeling, Chem. Eng. J. 446 (2022) 136656. [7] W.F. Mao, S.N. Zheng, N.J. Luo, J.H. Zhou, Y.Q. Cao, X.G. Zhou, Simulation and optimization on oxidative coupling reaction of CO to dimethyl oxalate in a tubular fixed bed reactor, CIESC J. 73 (1) (2022) 284-293. [8] R.R. Lu, H.Y. Zhu, A.R. Wang, J. Li, H.G. Dong, A coal-based polygeneration system of synthetic natural gas, methanol and ethylene glycol: process modeling and techno-economic evaluation, Sep. Purif. Technol. 320 (2023) 124122. [9] B.Y. Yu, C.Y. Chung, I.L. Chien, Development of a plant-wide Dimethyl Oxalate (DMO) synthesis process from syngas: rigorous design and optimization, Comput. Chem. Eng. 119 (2018) 85-100. [10] Q.C. Yang, D.W. Zhang, H.R. Zhou, C.W. Zhang, Process simulation, analysis and optimization of a coal to ethylene glycol process, Energy 155 (2018) 521-534. [11] Z.Q. Wang, J. Sun, Z.N. Xu, G.C. Guo, CO direct esterification to dimethyl oxalate and dimethyl carbonate: the key functional motifs for catalytic selectivity, Nanoscale 12 (39) (2020) 20131-20140. [12] D.V. Poerio, S.D. Brown, A frequency-localized recursive partial least squares ensemble for soft sensing, J. Chemom. 32 (5) (2018) e2999. [13] H. Kaneko, K. Funatsu, Application of online support vector regression for soft sensors, AlChE. J. 60 (2) (2014) 600-612. [14] Z.Q. Ge, Z.H. Song, S.X. Ding, B. Huang, Data mining and analytics in the process industry: the role of machine learning, IEEE Access 5 (2017) 20590-20616. [15] Q.Q. Sun, Z.Q. Ge, A survey on deep learning for data-driven soft sensors, IEEE Trans. Ind. Inform. 17 (9) (2021) 5853-5866. [16] A. Bakht, A. Nawaz, M. Lee, H. Lee, Ingredient analysis of biological wastewater using hybrid multi-stream deep learning framework, Comput. Chem. Eng. 168 (2022) 108038. [17] X.F. Yuan, L. Li, Y.L. Wang, Nonlinear dynamic soft sensor modeling with supervised long short-term memory network, IEEE Trans. Ind. Inform. 16 (5) (2020) 3168-3176. [18] Y. Li, L.J. Hu, N. Li, W.F. Shen, A light attention-mixed-base deep learning architecture toward process multivariable modeling and knowledge discovery, Comput. Chem. Eng. 174 (2023) 108259. [19] E. Esche, T. Talis, J. Weigert, G. Brand Rihm, B. You, C. Hoffmann, J.U. Repke, Semi-supervised learning for data-driven soft-sensing of biological and chemical processes, Chem. Eng. Sci. 251 (2022) 117459. [20] Y.Y. Tang, Y.L. Wang, C.L. Liu, X.F. Yuan, K. Wang, C.H. Yang, Semi-supervised LSTM with historical feature fusion attention for temporal sequence dynamic modeling in industrial processes, Eng. Appl. Artif. Intell. 117 (2023) 105547. [21] W. Bradley, J. Kim, Z. Kilwein, L. Blakely, M. Eydenberg, J. Jalvin, C. Laird, F. Boukouvala, Perspectives on the integration between first-principles and data-driven modeling, Comput. Chem. Eng. 166 (2022) 107898. [22] M. von Stosch, R. Oliveira, J. Peres, S. Feyo de Azevedo, Hybrid semi-parametric modeling in process systems engineering: past, present and future, Comput. Chem. Eng. 60 (2014) 86-101. [23] J. Sansana, M.N. Joswiak, I. Castillo, Z.Y. Wang, R. Rendall, L.H. Chiang, M.S. Reis, Recent trends on hybrid modeling for Industry 4.0, Comput. Chem. Eng. 151 (2021) 107365. [24] L. Ghiba, E.N. Dragoi, S. Curteanu, Neural network-based hybrid models developed for free radical polymerization of styrene, Polym. Eng. Sci. 61 (3) (2021) 716-730. [25] N. Luo, W.L. Du, Z.C. Ye, F. Qian, Development of a hybrid model for industrial ethylene oxide reactor, Ind. Eng. Chem. Res. 51 (19) (2012) 6926-6932. [26] W.T. Cang, H.Z. Yang, Adaptive soft sensor method based on online selective ensemble of partial least squares for quality prediction of chemical process, Asia Pac. J. Chem. Eng. 14 (5) (2019) e2346. [27] Y. Li, Z.N. Yang, X.H. Deng, N. Li, S.C. Li, Z.G. Lei, A. Eslamimanesh, S.M. Jin, W.F. Shen, A mechanism-data hybrid-driven framework for identifying dynamic characteristic of actual chemical processes, Chem. Eng. Res. Des. 199 (2023) 115-129. [28] C.J. Pan, Y.M. Dong, X.F. Yan, W.X. Zhao, Hybrid model for main and side reactions of p-xylene oxidation with factor influence based monotone additive SVR, Chemom. Intell. Lab. Syst. 136 (2014) 36-46. [29] O. Levenspiel, Levenspiel O. Chemical Reaction Engineering. John Wiley and Sons, New York, 1958. [30] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8) (1997) 1735-1780. [31] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014). [32] F. Souza, P. Santos, R. Araujo, Variable and delay selection using neural networks and mutual information for data-driven soft sensors, in: 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010). Bilbao. IEEE, 2010. |