[1] S. Stegemann, F. Leveiller, D. Franchi, H. de Jong, H. Linden, When poor solubility becomes an issue: from early stage to proof of concept, Eur. J. Pharm. Sci. 31 (5) (2007) 249-261. [2] D.M. Mudie, G.L. Amidon, G.E. Amidon, Physiological parameters for oral delivery and in vitro testing, Mol. Pharm. 7 (5) (2010) 1388-1405. [3] E. Galia, E. Nicolaides, D. Horter, R. Lobenberg, C. Reppas, J.B. Dressman, Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs, Pharm. Res. 15 (5) (1998) 698-705. [4] B. Hens, Y. Tsume, M. Bermejo, P. Paixao, M.J. Koenigsknecht, J.R. Baker, W.L. Hasler, R. Lionberger, J.H. Fan, J. Dickens, K. Shedden, B. Wen, J. Wysocki, R. Loebenberg, A. Lee, A. Frances, G. Amidon, A. Yu, G. Benninghoff, N. Salehi, A. Talattof, D.X. Sun, G.L. Amidon, Low buffer capacity and alternating motility along the human gastrointestinal tract: implications for in vivo dissolution and absorption of ionizable drugs, Mol. Pharm. 14 (12) (2017) 4281-4294. [5] L. Klumpp, K. Nagasekar, O. McCullough, A. Seybert, M. Ashtikar, J. Dressman, Stability of biorelevant media under various storage conditions, Dissolution Technol. 26 (2) (2019) 6-18. [6] C. Markopoulos, C.J. Andreas, M. Vertzoni, J. Dressman, C. Reppas, In-vitro simulation of luminal conditions for evaluation of performance of oral drug products: Choosing the appropriate test media, Eur. J. Pharm. Biopharm. 93 (2015) 173-182. [7] B. Yang, C.N. Wu, B. Ji, X.Y. Ai, X. Kuang, M.R. Wu, M.C. Sun, C. Luo, Z.G. He, J. Sun, The biorelevant concentration of Tween 80 solution is a simple alternative medium to simulated fasted state intestinal fluid, RSC Adv. 5 (127) (2015) 104846-104853. [8] A. Pobudkowska, U. Domanska, Study of pH-dependent drugs solubility in water, Chem. Ind. Chem. Eng. Q. 20 (1) (2014) 115-126. [9] A. Niederquell, M. Kuentz, Biorelevant drug solubility enhancement modeled by a linear solvation energy relationship, J. Pharm. Sci. 107 (1) (2018) 503-506. [10] K. Dong, F. Huo, S.J. Zhang, Thermodynamics at microscales: 3D→2D, 1D and 0D, Green Energy Environ. 5 (3) (2020) 251-258. [11] N.T. Hansen, I. Kouskoumvekaki, F.S. Joergensen, S. Brunak, S.O. Jonsdottir, Prediction of pH-dependent aqueous solubility of druglike molecules, J. Chem. Inf. Model. 46 (6) (2006) 2601-2609. [12] M.A. McDonald, A.S. Bommarius, R.W. Rousseau, Enzymatic reactive crystallization for improving ampicillin synthesis, Chem. Eng. Sci. 165 (2017) 81-88. [13] J.B. Gao, P. Wang, Z.K. Wang, C.L. Li, S.Q. Sun, S.Q. Hu, Self-assembly of DCPD-loaded cross-linked micelle from triblock copolymers and its pH-responsive behavior: a dissipative particle dynamics study, Chem. Eng. Sci. 195 (2019) 325-334. [14] M.J. Abdekhodaie, J. Cheng, X.Y. Wu, Effect of formulation factors on the bioactivity of glucose oxidase encapsulated chitosan-alginate microspheres: in vitro investigation and mathematical model prediction, Chem. Eng. Sci. 125 (2015) 4-12. [15] C.A.S. Bergstrom, K. Luthman, P. Artursson, Accuracy of calculated pH-dependent aqueous drug solubility, Eur. J. Pharm. Sci. 22 (5) (2004) 387-398. [16] E. Fuguet, X. Subirats, C. Rafols, E. Bosch, A. Avdeef, Ionizable drug self-associations and the solubility dependence on pH: detection of aggregates in saturated solutions using mass spectrometry (ESI-Q-TOF-MS/MS), Mol. Pharm. 18 (6) (2021) 2311-2321. [17] Y.W. Wardhana, E.N. Aisyah, I. Sopyan, T. Rusdiana, In vitro solubility and release profile correlation with pKa value of efavirenz polymorphs, Dissolution Technol. 28 (3) (2021) 14-22. [18] A.T.M. Serajuddin, Salt Formation to improve drug solubility, Adv. Drug Deliv. Rev. 59 (7) (2007) 603-616. [19] L.W. Dittert, T. Higuchi, D.R. Reese, Phase solubility technique in studying the formation of complex salts of triamterene, J. Pharm. Sci. 53 (1964) 1325-1328. [20] J. Lakra, D. Tikariha, T. Yadav, M.L. Satnami, K.K. Ghosh, Study of solubility efficiency of polycyclic aromatic hydrocarbons in single surfactant systems, J. Surfactants Deterg. 16 (6) (2013) 957-966. [21] I. Ullah, M.K. Baloch, G.F. Durrani, Solubility of LIDOCAINE in ionic, nonionic and zwitterionic surfactants, J. Solut. Chem. 41 (2) (2012) 215-222. [22] X.J. Liang, M.L. Zhang, C.L. Guo, S. Abel, X.Y. Yi, G.N. Lu, C. Yang, Z. Dang, Competitive solubilization of low-molecular-weight polycyclic aromatic hydrocarbons mixtures in single and binary surfactant micelles, Chem. Eng. J. 244 (2014) 522-530. [23] J. Wei, G.H. Huang, H. Yu, C.J. An, Efficiency of single and mixed Gemini/conventional micelles on solubilization of phenanthrene, Chem. Eng. J. 168 (1) (2011) 201-207. [24] R. Nagarajan, E. Ruckenstein, Theory of surfactant self-assembly: a predictive molecular thermodynamic approach, Langmuir 7 (12) (1991) 2934-2969. [25] A. Khoshnood, B. Lukanov, A. Firoozabadi, Temperature effect on micelle formation: molecular thermodynamic model revisited, Langmuir 32 (9) (2016) 2175-2183. [26] E. Jantratid, N. Janssen, C. Reppas, J.B. Dressman, Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update, Pharm. Res. 25 (7) (2008) 1663-1676. [27] J. Gross, G. Sadowski, Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules, Ind. Eng. Chem. Res. 40 (4) (2001) 1244-1260. [28] J. Gross, G. Sadowski, Application of the perturbed-chain SAFT equation of state to associating systems, Ind. Eng. Chem. Res. 41 (22) (2002) 5510-5515. [29] C. Held, T. Reschke, S. Mohammad, A. Luza, G. Sadowski, ePC-SAFT revised, Chem. Eng. Res. & Des. 92 (2014) 2884-2897. [30] J.P. Wolbach, S.I. Sandler, Using molecular orbital calculations to describe the phase behavior of cross-associating mixtures, Ind. Eng. Chem. Res. 37 (8) (1998) 2917-2928. [31] J. Cassens, A. Prudic, F. Ruether, G. Sadowski, Solubility of pharmaceuticals and their salts As a function of pH, Ind. Eng. Chem. Res. 52 (7) (2013) 2721-2731. [32] P. Tosco, B. Rolando, R. Fruttero, Y. Henchoz, S. Martel, P.A. Carrupt, A. Gasco, Physicochemical profiling of sartans: a detailed study of ionization constants and distribution coefficients, Helv. Chim. Acta 91 (3) (2008) 468-482. [33] Y.Y. Jiang, K. Ge, Y.H. Ji, Modeling and prediction of thermodynamic phase behaviors of oxaprozin and irbesartan in biorelevant media, Fluid Phase Equilib. 571 (2023) 113806. [34] L.A. Moreira, A. Firoozabadi, Thermodynamic modeling of the duality of linear 1-alcohols as cosurfactants and cosolvents in self-assembly of surfactant molecules, Langmuir 25 (20) (2009) 12101-12113. [35] K. Ge, R. Paus, V. Penner, G. Sadowski, Y.H. Ji, Theoretical modeling and prediction of biorelevant solubility of poorly soluble pharmaceuticals, Chem. Eng. J. 444 (2022) 136678. [36] L. Moreira, A. Firoozabadi, Molecular thermodynamic modeling of specific ion effects on micellization of ionic surfactants, Langmuir 26 (19) (2010) 15177-15191. [37] W.F. McDevit, F.A. Long, The activity coefficient of benzene in aqueous salt solutions, J. Am. Chem. Soc. 74 (7) (1952) 1773-1777. [38] K. Ge, Y.H. Ji, X.H. Lu, A novel interfacial thermodynamic model for predicting solubility of nanoparticles coated by stabilizers, Chin. J. Chem. Eng. 31 (2021) 103-112. [39] D. Kumar, M.A. Rub, Effect of anionic surfactant and temperature on micellization behavior of promethazine hydrochloride drug in absence and presence of urea, J. Mol. Liq. 238 (2017) 389-396. [40] C.A. Ericsson, O. Soderman, V.M. Garamus, M. Bergstrom, S. Ulvenlund, Effects of temperature, salt, and deuterium oxide on the self-aggregation of alkylglycosides in dilute solution. 1. n-nonyl-beta-D-glucoside, Langmuir 20 (4) (2004) 1401-1408. [41] H.M. Cassel, Critical concentration of micelle solutions, J. Chem. Phys. 61 (1) (1974) 430. [42] F. Gadelle, W.J. Koros, R.S. Schechter, Solubilization isotherms of aromatic solutes in surfactant aggregates, J. Colloid Interface Sci. 170 (1) (1995) 57-64. [43] N. Salehi, J. Al-Gousous, D.M. Mudie, G.L. Amidon, R.M. Ziff, G.E. Amidon, Hierarchical mass transfer analysis of drug particle dissolution, highlighting the hydrodynamics, pH, particle size, and buffer effects for the dissolution of ionizable and nonionizable drugs in a compendial dissolution vessel, Mol. Pharm. 17 (10) (2020) 3870-3884. [44] K. Ge, Y.H. Ji, A thermodynamic approach for predicting thermodynamic phase behaviors of pharmaceuticals in biorelevant media, Chem. Eng. Sci. 261 (2022) 117973. [45] S. Chakraborty, D. Shukla, A. Jain, B. Mishra, S. Singh, Assessment of solubilization characteristics of different surfactants for carvedilol phosphate as a function of pH, J. Colloid Interface Sci. 335 (2) (2009) 242-249. [46] Y. Wu, Y. Wang, T. Lei, Y. Xia, The solubilization capability of polycyclic aromatic hydrocarbons enhanced by biosurfactant saponin mixed with conventional chemical surfactants, Petrol. Sci. Technol. 32 (1) (2014) 108-115. [47] S. Tiwari, J. Ma, S. Rathod, P. Bahadur, Solubilization of quercetin in P123 micelles: Scattering and NMR studies, Colloids Surf. A Physicochem. Eng. Aspects 621 (2021) 126555. [48] P.A. Bhat, A. Dar, G.M. Rather, Solubilization capabilities of some cationic, anionic, and nonionic surfactants toward the poorly water-soluble antibiotic drug erythromycin, J. Chem. & Eng. Data 53 (2008) 1271-1277. |