[1] Y.S. Yun, C.E. Berdugo-Diaz, D.W. Flaherty, Advances in understanding the selective hydrogenolysis of biomass derivatives, ACS Catal. 11 (17) (2021) 11193-11232. [2] B. Zhang, T.L. Guo, Y.X. Liu, F.E. Kuhn, C. Wang, Z.K. Zhao, J.L. Xiao, C.Z. Li, T. Zhang, Sustainable production of benzylamines from lignin, Angew. Chem. Int. Ed. 60 (38) (2021) 20666-20671. [3] X. Fan, G. Yu, M. Wang, Y.P. Zhao, X.Y. Wei, F.Y. Ma, M. Zhong, Insight into the molecular distribution of soluble components from Dayan lignite through mass spectrometers with four ionization methods, Fuel 227 (2018) 177-182. [4] C. Higman, S. Tam, Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels, Chem. Rev. 114 (3) (2014) 1673-1708. [5] Z.-K. Li, X.-Y. Wei, H.-L. Yan, Y.-G. Wang, J. Kong, Z.-M. Zong, Advances in lignite extraction and conversion under mild conditions, Energy Fuels 29 (11) (2015) 6869-6886. [6] X.Z. Chen, X. Chen, J. Qi, C.H. Liang, Self-assembly synthesis of lamellar molybdenum carbides with controllable phases for hydrodeoxygenation of diphenyl ether, Mol. Catal. 492 (2020) 110972. [7] X. Zhang, J.F. Wu, T. Li, C.Z. Zhang, L.J. Zhu, S.R. Wang, Selective hydrodeoxygenation of lignin-derived phenolics to cycloalkanes over highly stable NiAl2O4 spinel-supported bifunctional catalysts, Chem. Eng. J. 429 (2022) 132181. [8] E. Paone, A. Beneduci, G.A. Corrente, A. Malara, F. Mauriello, Hydrogenolysis of aromatic ethers under lignin-first conditions, Mol. Catal. 497 (2020) 111228. [9] C.Z. Li, X.C. Zhao, A.Q. Wang, G.W. Huber, T. Zhang, Catalytic transformation of lignin for the production of chemicals and fuels, Chem. Rev. 115 (21) (2015) 11559-11624. [10] I.T. Ghampson, G. Pecchi, J.L.G. Fierro, A. Videla, N. Escalona, Catalytic hydrodeoxygenation of anisole over re-MoOx/TiO2 and re-VOx/TiO2 catalysts, Appl. Catal. B Environ. 208 (2017) 60-74. [11] X. Li, Z.M. Zong, W.W. Ma, Z.H. Wei, Y. Li, J.P. Cao, M. Mayyas, Z.K. Li, X.Y. Wei, A highly active Ni/mesoporous attapulgite for hydrocracking CO bonds in rice straw, Fuel Process. Technol. 131 (2015) 376-381. [12] X.Y. Ren, J.P. Cao, X.Y. Zhao, Z. Yang, T.L. Liu, X. Fan, Y.P. Zhao, X.Y. Wei, Catalytic upgrading of pyrolysis vapors from lignite over mono/bimetal-loaded mesoporous HZSM-5, Fuel 218 (2018) 33-40. [13] L. Yang, Y.D. Li, P.E. Savage, Hydrolytic cleavage of C-O linkages in lignin model compounds catalyzed by water-tolerant lewis acids, Ind. Eng. Chem. Res. 53 (7) (2014) 2633-2639. [14] J.W. Zhang, Y. Cai, G.P. Lu, C. Cai, Facile and selective hydrogenolysis of β-O-4 linkages in lignin catalyzed by Pd-Ni bimetallic nanoparticles supported on ZrO2, Green Chem. 18 (23) (2016) 6229-6235. [15] S.Z. Wang, K.L. Zhang, H.L. Li, L.P. Xiao, G.Y. Song, Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst, Nat. Commun. 12 (1) (2021) 416. [16] H.R. Wu, J.L. Song, C. Xie, C.Y. Wu, C.J. Chen, B.X. Han, Efficient and mild transfer hydrogenolytic cleavage of aromatic ether bonds in lignin-derived compounds over Ru/C, ACS Sustainable Chem. Eng. 6 (3) (2018) 2872-2877. [17] Z.K. Peng, Z.X. Wu, X.T. Sun, H.J. Li, Photocatalytic transfer hydrogenolysis of aryl ethers, Green Chem. 25 (17) (2023) 6869-6880. [18] R. Ghalta, R. Srivastava, Advancing sustainable lignin valorisation: utilizing Z-scheme photocatalysts for efficient hydrogenolysis of lignin’s β-O-4, α-O-4, and 4-O-5 linkages under ambient conditions, Green Chem. 26 (12) (2024) 7384-7405. [19] S. Han, Y. Zhao, M.N. Liang, X.X. Zhai, Q. Zhang, N. Sun, R. Ma, G.L. Li, Z.B. Xiao, Z.H. Ni, A mesoporous TiO2/carbon dot heterojunction photocatalyst efficiently cleaves entire types of C-O bonds in lignin under visible light, Green Chem. 27 (29) (2025) 8883-8900. [20] Z.W. Ren, X.Q. Si, J.L. Chen, X.B. Li, F. Lu, Catalytic complete cleavage of C-O and C-C bonds in biomass to natural gas over Ru(0), ACS Catal. 12 (9) (2022) 5549-5558. [21] C. Zhu, S.Y. Ding, H. Hojo, H. Einaga, Controlling diphenyl ether hydrogenolysis selectivity by tuning the Pt support and H-donors under mild conditions, ACS Catal. 11 (20) (2021) 12661-12672. [22] H.Y. Zeng, D.W. Cao, Z.H. Qiu, C.J. Li, Palladium-catalyzed formal cross-coupling of diaryl ethers with amines: Slicing the 4-O-5 linkage in lignin models, Angew. Chem. Int. Ed. 57 (14) (2018) 3752-3757. [23] J.H. Zhang, H.F. Xiao, C. Du, X.X. Qin, S. Li, J.M. Sun, J.H. Fang, C.B. Zhang, Activating MnO with embedded Ru for enhanced selective hydrogenolysis of C-O bonds in lignin-derived ethers over Ru-MnO/Al2O3, ACS Catal. 12 (15) (2022) 9812-9822. [24] W. Jiang, J.P. Cao, C. Zhu, T. Xie, X.Y. Zhao, M. Zhao, Y.P. Zhao, H.C. Bai, Selective cleavage of lignin-derived diphenyl ether C-O bond over weakly acidic Ni/Nb2O5 catalyst, Fuel 295 (2021) 120635. [25] X.G. Si, Y.P. Zhao, Q.L. Song, J.P. Cao, R.Y. Wang, X.Y. Wei, Hydrogenolysis of lignin-derived aryl ethers to monomers over a MOF-derived Ni/N-C catalyst, React. Chem. Eng. 5 (5) (2020) 886-895. [26] D.B.G. Williams, M. Lawton, Metal triflates: On the question of Lewis versus Broensted acidity in retinyl carbocation formation, J. Mol. Catal. A Chem. 317 (1-2) (2010) 68-71. [27] M. Busto, C.R. Vera, J.M. Grau, Optimal process conditions for the isomerization-cracking of long-chain n-paraffins to high octane isomerizate gasoline over Pt/SO42--ZrO2 catalysts, Fuel Process. Technol. 92 (9) (2011) 1675-1684. [28] M.F. Liu, X. Yu, X.F. Yu, Y.N. Zhao, L.J. Feng, X.G. Li, S. Yao, Catalytic hydrothermal liquefaction of algae for production of bio-oil with solid superacid catalyst SO42-/ZrO2, J. Ocean. Univ. China 21 (5) (2022) 1214-1226. [29] A. Petchmala, N. Laosiripojana, B. Jongsomjit, M. Goto, J. Panpranot, O. Mekasuwandumrong, A. Shotipruk, Transesterification of palm oil and esterification of palm fatty acid in near- and super-critical methanol with SO4-ZrO2 catalysts, Fuel 89 (9) (2010) 2387-2392. [30] Z.C. Wang, H.F. Shui, Y.N. Zhu, J.S. Gao, Catalysis of SO42-/ZrO 2 solid acid for the liquefaction of coal, Fuel 88 (5) (2009) 885-889. [31] X. Zhang, H. Yan, L.J. Zhu, T. Li, S.R. Wang, Hydrodeoxygenation of lignin-derived monomers and dimers over a Ru supported solid super acid catalyst for cycloalkane production, Adv. Sustain. Syst. 4 (10) (2020) 1900136. [32] K.H. Kang, U.G. Hong, J.O. Jun, J.H. Song, Y.J. Bang, J.H. Choi, S.J. Han, I.K. Song, Hydrogenation of succinic acid to γ-butyrolactone and 1, 4-butanediol over mesoporous rhenium-copper-carbon composite catalyst, J. Mol. Catal. A Chem. 395 (2014) 234-242. [33] L.I. Bikmetova, M.D. Smolikov, E.V. Zatolokina, K.V. Kazantsev, V.Y. Tregubenko, A.S. Belyi, Supported sulfated zirconia catalysts for isomerization of n-hexane, Procedia Eng. 152 (2016) 87-93. [34] J. Gao, Y. Cao, G. Luo, J.J. Fan, J.H. Clark, S.C. Zhang, High-efficiency catalytic hydrodeoxygenation of lignin-derived vanillin with nickel-supported metal phosphate catalysts, Chem. Eng. J. 448 (2022) 137723. [35] J. Yadagiri, K.S. Koppadi, S.S. Enumula, V. Vakati, S.R.R. Kamaraju, D.R. Burri, P.V. Somaiah, Ni/KIT-6 catalysts for hydrogenolysis of lignin-derived diphenyl ether, J. Chem. Sci. 130 (8) (2018) 106. [36] H. Song, L.L. Zhao, N. Wang, F. Li, Isomerization of n-pentane over solid superacid catalysts: Deactivation and regeneration, Appl. Catal. A Gen. 526 (2016) 37-44. [37] G.D. Fan, M. Shen, Z. Zhang, F.R. Jia, Preparation, characterization and catalytic properties of solid superacid catalyst, J. Rare Earths 27 (3) (2009) 437-442. [38] L. Huang, Y. Lv, S.T. Wu, P.L. Liu, W. Xiong, F. Hao, H.A. Luo, Activated carbon supported bimetallic catalysts with combined catalytic effects for aromatic nitro compounds hydrogenation under mild conditions, Appl. Catal. A Gen. 577 (2019) 76-85. [39] X. Kong, Y.F. Zhu, H.Y. Zheng, Y.L. Zhu, Z. Fang, Inclusion of Zn into metallic Ni enables selective and effective synthesis of 2, 5-dimethylfuran from bioderived 5-hydroxymethylfurfural, ACS Sustainable Chem. Eng. 5 (12) (2017) 11280-11289. [40] H. Xin, K. Guo, D. Li, H.Q. Yang, C.W. Hu, Production of high-grade diesel from palmitic acid over activated carbon-supported nickel phosphide catalysts, Appl. Catal. B Environ. 187 (2016) 375-385. [41] F.H. Meng, X. Li, M.H. Li, X.X. Cui, Z. Li, Catalytic performance of CO methanation over La-promoted Ni/Al2O3 catalyst in a slurry-bed reactor, Chem. Eng. J. 313 (2017) 1548-1555. [42] G. Guo, W.Z. Li, X.M. Dou, A.T. Ogunbiyi, T. Ahmed, B.K. Zhang, M.W. Wu, Hydroconversion of Kraft lignin for biofuels production using bifunctional rhenium-molybdenum supported zeolitic imidazolate framework nanocatalyst, Bioresour. Technol. 321 (2021) 124443. [43] W.L. Mo, Y. Wang, Y.Y. Ma, Y.J. Peng, X. Fan, Y.L. Wu, X.Y. Wei, Direct liquefaction performance of sub-bituminous coal from Hefeng by solid super acids and pyrolysis kinetic analysis of the corresponding residue, J. Anal. Appl. Pyrolysis 159 (2021) 105181. [44] K.V. Vikanova, A.L. Kustov, E.A. Makhov, O.P. Tkachenko, G.I. Kapustin, K.B. Kalmykov, I.V. Mishin, V.D. Nissenbaum, S.F. Dunaev, L.M. Kustov, Rhenium-contained catalysts based on superacid ZrO2 supports for CO2 utilization, Fuel 351 (2023) 128956. [45] H.G. Wang, G.L. Shi, F. Yu, R.F. Li, Mild synthesis of biofuel over a microcrystalline catalyst, Fuel Process. Technol. 145 (2016) 9-13. [46] K. Cui, X.G. Zhao, Q.P. Peng, H.H. Gong, X.J. Wei, J.J. Wang, M.Y. Chen, Z.S. Hou, Catalytic transfer hydrogenolysis of C-O bonds in lignin model compounds without arene hydrogenation, Green Chem. Eng. 3 (1) (2022) 25-33. [47] Q.X. Guan, G.X. Yun, W. Li, Tuning hydrodearomatization performance of interstitial NixW alloy catalyst by controlling the doping of a small amount of tungsten, Catal. Today 364 (2021) 202-210. [48] M. Guo, J. Peng, Q.H. Yang, C. Li, Highly active and selective RuPd bimetallic NPs for the cleavage of the diphenyl ether C-O bond, ACS Catal. 8 (12) (2018) 11174-11183. [49] L.J. Zhang, Y.Z. Wang, Y.L. Yang, B.S. Zhang, S. Wang, J.D. Lin, S.L. Wan, Y. Wang, Selective hydrogenolysis of aryl ether bond over Ru-Fe bimetallic catalyst, Catal. Today 365 (2021) 199-205. [50] W. Jiang, J.P. Cao, Z.X. Huan, X. Hu, W. Tang, C.X. Chen, H.Y. Wang, Z.M. He, X.Y. Zhao, H.C. Bai, Relatively electron-rich Ni nanoparticles supported on α-Al2O3 for high-efficiency hydrogenolysis of lignin and its derivatives under mild conditions, ACS Sustainable Chem. Eng. 11 (50) (2023) 17646-17661. [51] R.A. Rajadhyaksha, S.L. Karwa, Solvent effects in catalytic hydrogenation, Chem. Eng. Sci. 41 (7) (1986) 1765-1770. [52] X.Y. Wang, R. Rinaldi, Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin, ChemSusChem 5 (8) (2012) 1455-1466. [53] C. Zhu, J.P. Cao, X.Y. Zhao, T. Xie, M. Zhao, X.Y. Wei, Bimetallic effects in the catalytic hydrogenolysis of lignin and its model compounds on Nickel-Ruthenium catalysts, Fuel Process. Technol. 194 (2019) 106126. [54] C. Zhang, J.P. Cao, X.Y. Zhao, J.X. Xie, L. Zhao, W. Jiang, Z.M. He, H.L. Cong, H.C. Bai, Selective hydrogenation of naphthalene to produce tetralin over a Ni/S950 catalyst under mild conditions, Ind. Eng. Chem. Res. 62 (17) (2023) 6780-6789. [55] T. Xie, J.P. Cao, C. Zhu, X.Y. Zhao, M. Zhao, Y.P. Zhao, X.Y. Wei, Selective cleavage of CO bond in benzyl phenyl ether over Pd/AC at room temperature, Fuel Process. Technol. 188 (2019) 190-196. [56] Y.H. Hu, G.C. Jiang, G.Q. Xu, X.D. Mu, Hydrogenolysis of lignin model compounds into aromatics with bimetallic Ru-Ni supported onto nitrogen-doped activated carbon catalyst, Mol. Catal. 445 (2018) 316-326. [57] L.J. Zhang, Y.Z. Wang, L. Zhang, Z.X. Chi, Y.L. Yang, Z.X. Zhang, B.S. Zhang, J.D. Lin, S.L. Wan, Hydrogenolysis of aryl ether bond over heterogeneous cobalt-based catalyst, Ind. Eng. Chem. Res. 59 (39) (2020) 17357-17364. [58] M. Chatterjee, T. Ishizaka, H. Kawanami, Hydrogenolysis/hydrogenation of diphenyl ether as a model decomposition reaction of lignin from biomass in pressurized CO2/water condition, Catal. Today 281 (2017) 402-409. [59] S. Rengshausen, F. Etscheidt, J. Grosskurth, K. Luska, A. Bordet, W. Leitner, Catalytic hydrogenolysis of substituted diaryl ethers by using ruthenium nanoparticles on an acidic supported ionic liquid phase (Ru@SILP-SO3H), Synlett 30 (4) (2019) 405-412. [60] M. Chatterjee, A. Chatterjee, T. Ishizaka, H. Kawanami, Rhodium-mediated hydrogenolysis/hydrolysis of the aryl ether bond in supercritical carbon dioxide/water: An experimental and theoretical approach, Catal. Sci. Technol. 5 (3) (2015) 1532-1539. [61] M. Wang, H. Shi, D.M. Camaioni, J.A. Lercher, Palladium-catalyzed hydrolytic cleavage of aromatic C-O bonds, Angew. Chem. Int. Ed. 56 (8) (2017) 2110-2114. |