[1] F. Oldewurtel, A. Parisio, C.N. Jones, D. Gyalistras, M. Gwerder, V. Stauch, B. Lehmann, M. Morari, Use of model predictive control and weather forecasts for energy efficient building climate control, Energy Build. 45 (2012) 15-27. [2] L. del Re, F. Allgower, L. Glielmo, C. Guardiola, I. Kolmanovsky, Automotive Model Predictive Control: Models, Methods and Applications. Springer London, 2010. [3] G. Serale, M. Fiorentini, A. Capozzoli, D. Bernardini, A. Bemporad, Model predictive control (MPC) for enhancing building and HVAC system energy efficiency: problem formulation, applications and opportunities, Energies 11 (3) (2018) 631. [4] M. Schwenzer, M. Ay, T. Bergs, D. Abel, Review on model predictive control: an engineering perspective, Int. J. Adv. Manuf. Technol. 117 (5) (2021) 1327-1349. [5] R.Q. Chai, A. Tsourdos, A. Savvaris, S.C. Chai, Y.Q. Xia, C.L. Philip Chen, Review of advanced guidance and control algorithms for space/aerospace vehicles, Prog. Aerosp. Sci. 122 (2021) 100696. [6] S. Vazquez, J. Rodriguez, M. Rivera, L.G. Franquelo, M. Norambuena, Model predictive control for power converters and drives: advances and trends, IEEE Trans. Ind. Electron. 64 (2) (2017) 935-947. [7] J. B. Rawlings, D. Q. Mayne, M. Diehl, Model Predictive Control: Theory, Computation, and Design, Vol. 2, Nob Hill Publishing Madison, WI, 2017. [8] J. Maciejowski, Predictive Control: With Constraints, Prentice Hall, 2002. [9] K.P. Murphy, Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge, Mass. 2012. [10] A.E. Ruano, Intelligent Control Systems using Computational Intelligence Techniques. Institution of Engineering and Technology, 2005. [11] C. M. Bishop, Pattern Recognition and Machine Learning, Springer New York, 2006. [12] A.X. Dong, A. Starr, Y.F. Zhao, Neural network-based parametric system identification: a review, Int. J. Syst. Sci. 54 (13) (2023) 2676-2688. [13] O. Nelles, Nonlinear Dynamic System Identification, in: Nonlinear System Identification: From Classical Approaches to Neural Networks, Fuzzy Models, and Gaussian Processes, O. Nelles (Ed.), Springer International Publishing, Cham, 2020. [14] M. Seeger, Gaussian processes for machine learning, Int. J. Neural Syst. 14 (2) (2004) 69-106. [15] S.L. Brunton, J.N. Kutz, Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge: Cambridge University Press, 2022. [16] Z. Wu, P.D. Christofides, W.L. Wu, Y.J. Wang, F. Abdullah, A. Alnajdi, Y. Kadakia, A tutorial review of machine learning-based model predictive control methods, Rev. Chem. Eng. 41 (4) (2025) 359-400. [17] L. Hewing, K.P. Wabersich, M. Menner, M.N. Zeilinger, Learning-based model predictive control: toward safe learning in control, Annu. Rev. Control Robot. Auton. Syst. 3 (2020) 269-296. [18] W.R. Jacobs, T. Baldacchino, T. Dodd, S.R. Anderson, Sparse Bayesian nonlinear system identification using variational inference, IEEE Trans. Autom. Control 63 (12) (2018) 4172-4187. [19] Q. Zhang, L. Wang, W.H. Xu, H.Y. Su, L. Xie, Nonlinear sparse variational Bayesian learning based model predictive control with application to PEMFC temperature control, Control Eng. Pract. 148 (2024) 105952. [20] Z. Wu, D. Rincon, J.W. Luo, P.D. Christofides, Machine learning modeling and predictive control of nonlinear processes using noisy data, AIChE. J. 67 (4) (2021) e17164. [21] M. Valipour, L.A. Ricardez-Sandoval, Constrained abridged Gaussian sum extended Kalman filter: constrained nonlinear systems with non-Gaussian noises and uncertainties, Ind. Eng. Chem. Res. 60 (47) (2021) 17110-17127. [22] M. Valipour, L.A. Ricardez-Sandoval, Abridged Gaussian sum extended Kalman filter for nonlinear state estimation under non-Gaussian process uncertainties, Comput. Chem. Eng. 155 (2021) 107534. [23] Q. Zhang, W.H. Xu, L. Xie, H.Y. Su, Dynamic fault detection and diagnosis for alkaline water electrolyzer with variational Bayesian Sparse principal component analysis, J. Process. Control 135 (2024) 103173. [24] T. Baldacchino, K. Worden, J. Rowson, Robust nonlinear system identification: Bayesian mixture of experts using the t-distribution, Mech. Syst. Signal Process. 85 (2017) 977-992. [25] X.Q. Yang, Y.J. Lu, Z.B. Yan, Robust global identification of linear parameter varying systems with generalised expectation-maximisation algorithm, IET Control Theory Appl. 9 (7) (2015) 1103-1110. [26] T.B. Schon, A. Wills, B. Ninness, System identification of nonlinear state-space models, Automatica 47 (1) (2011) 39-49. [27] R.B. Gopaluni, A particle filter approach to identification of nonlinear processes under missing observations, Can. J. Chem. Eng. 86 (6) (2008) 1081-1092. [28] Simo Sarkka, Bayesian Filtering and Smoothing, Cambridge University Press, Cambridge, U.K. 2013. [29] I. Askari, S. Zeng, H.Z. Fang, Nonlinear model predictive control based on constraint-aware particle filtering/smoothing,in: 2021 American Control Conference (ACC). New Orleans, LA, USA. IEEE, (2021) 3532-3537. [30] K.G. Shin, X.Z. Cui, Computing time delay and its effects on real-time control systems, IEEE Trans. Control Syst. Technol. 3 (2) (1995) 218-224. [31] W. Michiels, V. Van Assche, S.I. Niculescu, Stabilization of time-delay systems with a Controlled time-varying delay and applications, IEEE Trans. Autom. Control 50 (4) (2005) 493-504. [32] J.P. Richard, Time-delay systems: an overview of some recent advances and open problems, Automatica 39 (10) (2003) 1667-1694. [33] W.L. Wu, Y.J. Wang, M.Q. Zhang, M.S. Chiu, Z. Wu, Phased LSTM-based MPC for modeling and control of nonlinear systems using asynchronous and delayed measurement data, 2024 IEEE 63rd Conference on Decision and Control (CDC). Milan, Italy. IEEE, (2024) 132-139. [34] L. Xie, H.Z. Yang, B. Huang, FIR model identification of multirate processes with random delays using EM algorithm, AIChE. J. 59 (11) (2013) 4124-4132. [35] X.Q. Yang, S. Yin, Robust global identification and output estimation for LPV dual-rate systems subjected to random output time-delays, IEEE Trans. Ind. Inform. 13 (6) (2017) 2876-2885. [36] J. Chen, B. Huang, F. Ding, Y. Gu, Variational Bayesian approach for ARX systems with missing observations and varying time-delays, Automatica 94 (2018) 194-204. [37] T. Eltoft, T. Kim, T.W. Lee, On the multivariate Laplace distribution, IEEE Signal Process. Lett. 13 (5) (2006) 300-303. [38] Z. Ghahramani, G. E. Hinton, Parameter estimation for linear dynamical systems, Technical Report CRG-TR-96-2, U. of Toronto, Department of Comp. Sci., 1996. [39] B. Joergensen, Statistical Properties of the Generalized Inverse Gaussian Distribution. Springer New York, 1982. [40] W.R.W. Daud, R.E. Rosli, E.H. Majlan, S.A.A. Hamid, R. Mohamed, T. Husaini, PEM fuel cell system control: a review, Renew. Energy 113 (2017) 620-638. [41] B. Zhang, F. Lin, C.Z. Zhang, R.Y. Liao, Y.X. Wang, Design and implementation of model predictive control for an open-cathode fuel cell thermal management system, Renew. Energy 154 (2020) 1014-1024. [42] X.H. Yuan, G. Wu, J.G. Zhou, X. Xiong, Y.P. Wang, MPC-based thermal management for water-cooled proton exchange membrane fuel cells, Energy Rep. 8 (2022) 338-348. |