[1] H. Pyun, K. Kim, D. Ha, C.J. Lee, W.B. Lee, Root causality analysis at early abnormal stage using principal component analysis and multivariate granger causality, Process Saf. Environ. Prot. 135(2020) 113-125. [2] W. Du, Y. Zhang, W. Zhou, Modified Non-Gaussian multivariate statistical process monitoring based on the Gaussian distribution transformation, J. Process Control 85(2020) 1-14. [3] J.M. Chen, C.H. Yang, C. Zhou, Y.G. Li, H.Q. Zhu, W.H. Gui, Multivariate regression model for industrial process measurement based on double locally weighted partial least squares, IEEE Trans. Instrum. Meas. 69(7) (2020) 3962-3971. [4] B. Song, H. Shi, S. Tan, Y. Tao, Multisubspace orthogonal canonical correlation analysis for quality-related plant-wide process monitoring, IEEE Trans. Ind. Inf. 17(9) (2020) 6368-6378. [5] E. Vanhatalo, M. Kulahci, B. Bergquist, On the structure of dynamic principal component analysis used in statistical process monitoring, Chemometr. Intell. Lab. Syst. 167(2017) 1-11. [6] C.C. Hsu, M.C. Chen, L.S. Chen, A novel process monitoring approach with dynamic independent component analysis, Control Eng. Pract. 18(2010) 242-253. [7] J. Yu, J. Yoo, J. Jang, J.H. Park, S. Kim, A novel hybrid of auto-associative kernel regression and dynamic independent component analysis for fault detection in nonlinear multimode processes, J. Process Control 68(2018) 129-144. [8] G. Lee, C.H. Han, E.S. Yoon, Multiple-fault diagnosis of the Tennessee eastman process based on system decomposition and dynamic PLS, Ind. Eng. Chem. Res. 43(25) (2004) 8037-8048. [9] Z. Luo, H. Li, Dynamic partial-least-squares-based fault detection for nonlinear distributed parameter systems, IEEE Trans. Instrum. Meas. 73(2024) 1-9. [10] L. Guo, P. Wu, J. Gao, S. Lou, Sparse kernel principal component analysis via sequential approach for nonlinear process monitoring, IEEE Access 7(2019) 47550-47563. [11] Q. Zhu, Z.G. Zhao, F. Liu, Developing new products with kernel partial least squares model inversion, Comput. Chem. Eng. 155(2021) 107537. [12] L. Feng, T. Di, Y. Zhang, HSIC-Based kernel independent component analysis for fault monitoring, Chemometr. Intell. Lab. Syst. 178(2018) 47-55. [13] M.X. Jia, F. Chu, F.L. Wang, W. Wang, On-line batch process monitoring using batch dynamic kernel principal component analysis, Chemometr. Intell. Lab. Syst. 101(2) (2010) 110-122. [14] Q. Zhang, P. Li, X. Lang, A.M. Miao, Improved dynamic kernel principal component analysis for fault detection, Measurement 158(2020) 107738. [15] C.H. Zhao, B. Huang, A full-condition monitoring method for nonstationary dynamic chemical processes with cointegration and slow feature analysis, AIChE J. 64(5) (2018) 1662-1681. [16] L. Wiskott, T.J. Sejnowski, Slow feature analysis: unsupervised learning of invariances, Neural Comput. 14(4) (2002) 715-770. [17] C. Shang, F. Yang, X.Q. Gao, X.L. Huang, J.A.K. Suykens, D.X. Huang, Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis, AIChE J. 61(11) (2015) 3666-3682. [18] S.M. Zhang, C.H. Zhao, B. Huang, Simultaneous static and dynamic analysis for fine-scale identification of process operation statuses, IEEE Trans. Ind. Inf. 15(9) (2019) 5320-5329. [19] Y. Si, Y. Wang, Two-step dynamic slow feature analysis for dynamic process monitoring, in: 20191st International Conference on Industrial Artificial Intelligence, (IAI), IEEE, 2019. [20] Y.N. Dong, S.J. Qin, A novel dynamic PCA algorithm for dynamic data modeling and process monitoring, J. Process Control 67(2018) 1-11. [21] Y.N. Dong, Y.X. Liu, S. Joe Qin, Efficient dynamic latent variable analysis for high-dimensional time series data, IEEE Trans. Ind. Inf. 16(6) (2019) 4068-4076. [22] Y.N. Dong, S. Joe Qin, Dynamic-inner canonical correlation and causality analysis for high dimensional time series data, IFAC-PapersOnLine 51(18) (2018) 476-481. [23] Y.M. Xu, M.X. Jia, Z.Z. Mao, A novel auto-regressive dynamic slow feature analysis method for dynamic chemical process monitoring, Chem. Eng. Sci. 248(2022) 117236. [24] N. Zhang, X.M. Tian, L.F. Cai, X.G. Deng, Process fault detection based on dynamic kernel slow feature analysis, Comput. Electr. Eng. 41(2015) 9-17. [25] Y. Xu, M. Jia, Z. Mao, H. Li, A novel kernel dynamic inner slow feature analysis method for dynamic nonlinear process concurrent monitoring of operating point deviations and process dynamics anomalies, J. Process Control 110(2022) 59-75. [26] J. Corrigan, J. Zhang, Developing accurate data-driven soft-sensors through integrating dynamic kernel slow feature analysis with neural networks, J. Process Control 106(2021) 208-220. [27] H.H. Gao, W.J. Huang, X.J. Gao, H.G. Han, Decentralized adaptively weighted stacked autoencoder-based incipient fault detection for nonlinear industrial processes, ISA Trans. 139(2023) 216-228. [28] X. Deng, X. Zhang, P. Wang, Improved slow feature analysis based CSTR fault diagnosis method and experimental platform, Exp. Technol. Manag. 39(9) (2022) 152-157. (in Chinese) [29] X. Deng, X. Zhang, X. Liu, Y. Cao, Incipient fault detection of nonlinear chemical processes based on probability-related randomized slow feature analysis, Process Saf. Environ. Prot. 169(2023) 797-807. [30] P.P. Odiowei, Y. Cao, Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations, IEEE Trans. Ind. Inf. 6(1) (2010) 36-45. [31] A. Rahimi, B. Recht, Random features for large-scale kernel machines, in: J. Platt, D. Koller, Y. Singer, S. Roweis (Eds.), Advances in Neural Information Processing Systems 20, Curran Associates Inc., Vancouver B.C., 2007. [32] X.G. Deng, Z. Zhang, Nonlinear chemical process fault diagnosis using ensemble deep support vector data description, Sensors 20(16) (2020) 4599. [33] P.P. Cai, X.G. Deng, Incipient fault detection for nonlinear processes based on dynamic multi-block probability related kernel principal component analysis, ISA Trans. 105(2020) 210-220. [34] Q. Chen, Y.Q. Wang, Key-performance-indicator-related state monitoring based on kernel canonical correlation analysis, Control Eng. Pract. 107(2021) 104692. [35] X. Deng, Z. Yu, Continuous stirred tank reactor mechanical modeling and opening virtual simulation system development, Exp. Technol. Manag. 33(1) (2016) 114-117(in Chinese). [36] K.E.S. Pilario, Y. Cao, Canonical variate dissimilarity analysis for process incipient fault detection, IEEE Trans. Ind. Inf. 14(12) (2018) 5308-5315. [37] K.E. Pilaria, Feedback-controlled CSTR process for fault simulation, in: https://uk.mathworks.com/matlabcentral/fileexchange/66189-feedbackcontrolled-cstr-process-for-fault-simulation/, 2024. (Accessed 10 May 2024). |