[1] International Atomic Energy Agency, Technetium-99m Radiopharmaceuticals: Status and Trends, IAEA radioisotopes and radiopharmaceuticals series No. 1, IAEA, Vienna, (2009). http://www.iaea.org/Publications/index.html. [2] W.C. Eckelman, Unparalleled contribution of technetium-99m to medicine over 5 decades, JACC Cardiovasc. Imaging 2 (3) (2009) 364-368. [3] S.M. Rathmann, Z. Ahmad, S. Slikboer, H.A. Bilton, D.P. Snider, J.F. Valliant, The radiopharmaceutical chemistry of technetium-99m, In: J. Lewis, A. Windhorst, B. Zeglis (Eds.), Radiopharmaceutical Chemistry, Springer, Cham, 2019, pp. 311-333. [4] S. Mattsson, L. Johansson, S. Leide Svegborn, J. Liniecki, D. Nosske, M. Stabin, D. Taylor, W. Bolch, S. Carlsson, K. Eckerman, A. Giussani, L. Soderberg, S. Valind, Radiation dose to patients from radiopharmaceuticals, In: O. Dossel, W.C. Schlegel (Eds.), World Congress on Medical Physics and Biomedical Engineering, IFMBE Proceedings, Munich, Germany, 2009, Vol. 25 (3), pp. 474-477. [5] M. Cervera, 99mTc production processes: An examination of proposals to ensure stable North American medical supplies, Master of Science Thesis, Colorado State University, USA, 2009. [6] S. Hasan, M.A. Prelas, Molybdenum-99 production pathways and the sorbents for 99Mo/99mTc generator systems using (n, γ) 99Mo: A review, SN Appl. Sci. 2 (11) (2020) 1782. [7] B. El Bakkari, B. Nacir, T. El Bardouni, C. El Younoussi, Y. Boulaich, H. Boukhal, Feasibility analysis of I-131 production in the Moroccan TRIGA research reactor, Ann. Nucl. Energy 78 (2015) 140-145. [8] W.D. Tucker, M.W. Greene, A.J. Weiss, A.P. Murrenhoff, Methods of preparation of some carrier-free radioisotopes involving sorption on alumina, Report No. BNL 3746. Brookhaven National Laboratory, 1958. [9] V.J. Molinski, A review of 99mTc generator technology, Int. J. Appl. Radiat. Isot. 33 (10) (1982) 811-819. [10] L.G. Stang Jr., Manual of isotope production processes in use at Brookhaven National Laboratory, Brookhaven National Laboratory, Upton, New York, 1964. [11] D. Novotny, G. Wagner, Procedure of small-scale production of Mo-99 on the basis of irradiated natural uranium metal as target, Consultants Meeting on Small Scale Production of Fission Mo-99 for Use in Tc-99m Generators, IAEA, Vienna, Austria, 2003. [12] A. Mutalib, B. Purwadi, H.G. Adang, L. Hotman, Moeridoen, A. Kadarisman, A. Sukmana, D. Sriyono, A. Suripto, H. Nasution, D.L. Amin, A. Basiran, A. Gogo, D. Sunaryadi, T. Taryo, G.F. Vandegrift, G. Hofman, C. Conner, J. Sedlet, D. Walker, R. A. Leonard, E.L. Wood, T.C. Wiencek, J.L. Snelgrove, Full-scale demonstration of the CINTICHEM process for the production of Mo-99 using a low-enriched target, Proceedings of the 21st International Meeting on Reduced Enrichment for Research and Test Reactors, Sao Paulo, Brazil, 1998. [13] S.A. Ali, Production of molybdenum-99, Proceedings of the International Symposium on Isotope Applications, Taipei, Taiwan, China, 1986, 291. [14] S.A. Ali, H.J. Ache, Production techniques of fission molybdenum-99, Radiochim. Acta 41 (2-3) (1987) 65-72. [15] R.R. Sheha, S.I. Moussa, D.M. Dorrah, G.M. El-Subruiti, M.S. Masoud, Synthesis of some anion exchange resins for selective separation of 99Mo and 131I: A comparative study, Sep. Sci. Technol. 60 (2) (2025) 282-301. [16] G.F. Liao, L. Zhong, C.S. Cheung, C. Du, J.L. Wu, W.B. Du, H.D. Zheng, H.Y. Gao, Direct synthesis of hypercrosslinked microporous poly(para-methoxystyrene) for removal of iron(III) ion from aqueous solution, Microporous Mesoporous Mater. 307 (2020) 110469. [17] C. Pacurariu, G. Mihoc, A. Popa, S.G. Muntean, R. Ianos, Adsorption of phenol and p-chlorophenol from aqueous solutions on poly(styrene-co-divinylbenzene) functionalized materials, Chem. Eng. J. 222 (2013) 218-227. [18] J.H. Huang, H.W. Zha, X.Y. Jin, S.G. Deng, Efficient adsorptive removal of phenol by a diethylenetriamine-modified hypercrosslinked styrene-divinylbenzene (PS) resin from aqueous solution, Chem. Eng. J. 195 (2012) 40-48. [19] A. Kumar, T. Vlach, P. Ryparova, S. Andrijana Sever, J. Kovac, S. Adamopoulos, P. Hajek, M. Petric, Influence of liquefied wood polyol on the physical-mechanical and thermal properties of epoxy based polymer, Polym. Test. 64 (2017) 207-216. [20] S. Slomkowski, D. Kowalczyk, M.M. Chehimi, M. Dealamar, X-ray photoelectron spectroscopy as a tool for studies of the surface layer of microspheres. The case of polystyrene and poly(styrene-acrolein) microspheres with attached human serum albumin, Colloid Polym. Sci. 278 (9) (2000) 878-883. [21] D.X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, R.S. Ruoff, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy, Carbon 47 (1) (2009) 145-152. [22] P. Adelfang, Y.D. Baranaev, M.L. A. Barbosa, F. Barbry, E. Bradley, I. Goldman, G.W. Neeley, W. Niu, V.A. Pavshuk, N. Ramamoorthy, Homogeneous aqueous solution nuclear reactors for the production of Mo-99 and other short-lived radioisotopes, IAEA-TECDOC-1601, International Atomic Energy Agency, 2008. [23] G.E. Dale, D.A. Dalmas, M.J. Gallegos, K.R. Jackman, C.T. Kelsey IV, I. May, S.D. Reilly, G.M. Stange, 99Mo separation from high-concentration irradiated uranium nitrate and uranium sulfate solutions, Ind. Eng. Chem. Res. 51 (40) (2012) 13319-13322. [24] J.P. Gustafsson, Modelling molybdate and tungstate adsorption to ferrihydrite, Chem. Geol. 200 (1-2) (2003) 105-115. [25] P.C.H. Mitchell, Molybdenum and molybdenum compounds, In: Ullmann’s Encyclopedia of Industrial Chemistry (5th ed., A16, Chap. 7), Wiley-VCH GmbH & Co. KGaA, Weinheim, 1990, pp. 675-682. [26] J. Torres, F. Tissot, P. Santos, C. Ferrari, C. Kremer, E. Kremer, Interactions of W(VI) and Mo(VI) oxyanions with metal cations in natural waters, J. Solut. Chem. 45 (11) (2016) 1598-1611. [27] O.F. Oyerinde, C.L. Weeks, A.D. Anbar, T.G. Spiro, Solution structure of molybdic acid from Raman spectroscopy and DFT analysis, Inorg. Chim. Acta 361 (4) (2008) 1000-1007. [28] J. Aveston, E.W. Anacker, J.S. Johnson, Hydrolysis of molybdenum(VI). ultracentrifugation, acidity measurements, and Raman spectra of polymolybdates, Inorg. Chem. 3 (5) (1964) 735-746. [29] R.H. Busey, O.L. Keller Jr, Structure of the aqueous pertechnetate ion by Raman and infrared spectroscopy. Raman and infrared spectra of crystalline KTcO4, KReO4, Na2MoO4, Na2WO4, Na2MoO4·2H2O, and Na2WO4·2H2O, J. Chem. Phys. 41 (1) (1964) 215-225. [30] C.V. Krishnan, M. Garnett, B. Hsiao, B. Chu, Electrochemical measurements of isopolyoxomolybdates: 1. pH dependent behavior of sodium molybdate, Int. J. Electrochem. Sci. 2 (1) (2007) 29-51. [31] A. Abdelouas, B. Grambow, Aquatic chemistry of long-lived mobile fission and activation products in the context of deep geological disposal, in: C. Poinssot, H. Geckeis (Eds.), Radionuclide Behaviour in the Natural Environment, Elsevier, Amsterdam, 2012, pp. 70-102. [32] F. Guo, X.L. Xi, L.W. Ma, Z.R. Nie, Property and mechanism on sorption of molybdenum from tungstate solution with a porous amine resin, J. Clean. Prod. 335 (2022) 130304. [33] N. Bahramifar, M. Tavasolli, H. Younesi, Removal of eosin Y and eosin B dyes from polluted water through biosorption using Saccharomyces cerevisiae: Isotherm, kinetic, and thermodynamic studies, J. App. Res. Wat. Wast. 2 (1) (2015) 108-114. [34] H. Cols, P. Cristini, R. Marques, Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production, Report No. ANL/RERTR/TM-20, Proceedings of the International Meeting on Reduced Enrichment for Research and Test Reactors, Williamsburg, VA, United States, 1997, pp. 114-117. [35] S. Pavelka, Metabolism of bromide and its interference with the metabolism of iodine, Physiol. Res. 53 (2004) S81-S90. [36] T.N. van der Walt, P.P. Coetzee, The isolation of 99Mo from fission material for use in the 99Mo/99mTc generator for medical use, Radiochim. Acta 92 (4-6) (2004) 251-257. |