1 Laidler, K.J., "Organic decompositions", In: Chemical Kinetics, 2nd edition, McGraw-Hill, New York, 386-413 (1965).2 Joo, E., Lee, K., Lee, M., "CRACKER—A PC based simulator for industrial cracking furnaces", Comput. Chem. Eng., 24 (2-7), 1523-1528 (2000).3 Heynderickx, G.J., Oprins, A.J.M., Marin, G.B., "Three-dimensional flow patterns in cracking furnaces with long-flame burners", AIChE J., 47 (2), 388-400 (2001).4 Oprins, A.J.M., Heynderickx, G.J., Marin, G.B., "Three-dimensional asymmetric flow and temperature fields in cracking furnaces", Ind. Eng. Chem. Res., 40 (23), 5087-5094 (2001).5 Oprins, A.J.M., Heynderickx, G.J., "Calculation of three-dimensional flow and pressure fields in cracking furnaces", Chem. Eng. Sci., 58 (21), 4883-4893 (2003).6 Zhai, J.X., Tu, S.D., Li, D.J., "Numerical simulation of flow field in tubes of ethylene cracking furnace with static mixer units", J. Lanzhou Univ. Technol., 30 (5), 55-58 (2004). (in Chinese)7 Niaei, A., Towfighi, J., Sadrameli, S.M., "The combined simulation of heat transfer and pyrolysis reactions in industrial cracking furnaces", Appl. Therm. Eng., 24 (14-15), 2251-2265 (2004).8 Stefanidis, G.D., Merci, B., Heynderickx, G.J., "CFD simulations of steam cracking furnaces using detailed combustion mechanisms", Comput. Chem. Eng., 30 (4), 635-649 (2006).9 Stefanidis, G.D., Van Geem, K.M., "Evaluation of high-emissivity coatings in steam cracking furnaces using a non-grey gas radiation model", Chem. Eng. J., 137 (2), 411-421 (2008). 10 Lan, X., Gao, J., Xu, C., "Numerical simulation of transfer and reaction processes in ethylene furnaces", Chem. Eng. Res. Des., 85 (12), 1565-1579 (2007). 11 Wang, Z.Y., Luo, G.J., Wu, H.Q., "The kinetics model of the naphtha thermal cracking for ethylene (I)", J. Daqing. Pet. Inst., 1 (2), 1-12 (1978). (in Chinese) 12 Wang, Z.Y., Luo, G.J., Wu, H.Q., "The kinetics model of the naphtha thermal cracking for ethylene (Ⅱ)", J. Daqing. Pet. Inst., 3 (1), 8-25 (1980). (in Chinese) 13 Hu, G.H., Wang, H.G., Qian, F., "Numerical simulation on flow, combustion and heat transfer of ethylene cracking furnaces", Chem. Eng. Sci., 66 (8), 1600-1611 (2011). 14 Kumar, P., Kunzru, D., "Modeling of naphtha pyrolysis", Ind. Eng. Chem. Process. Des. Dev., 24 (3), 774-782 (1985). 15 Launder, B.E., Spalding, D.B., Lectures in Mathematical Models of Turbulence, Academic Press, London and New York, 90-110 (1972). 16 Sundaram, K.M., Froment, G.F., "Modeling of thermal cracking kinetics. 3. Radical mechanisms for the pyrolysis of simple paraffins, olefins, and their mixtures", Ind. Eng. Chem. Fundam., 17 (3), 174-182 (1978). 17 Magnussen, B.F., Hjertager, B.H., "On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion", In: 16th Symposium (International) on Combustion, The combustion Insititute, Pittsburgh, 719-729 (1977). 18 Hjertager, L.K., Hjertager, B.H., Solberg, T., "CFD modelling of fast chemical reactions in turbulent liquid flows", Comput. Chem. Eng., 26 (4-5), 507-515 (2002). 19 Magnussen, B.F., "On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow", In: 19th Aerospace Science Meeting, American Institute of Aeronautics and Astronautics, St. Louis, Missouri, USA (1981) 20 Gran, I.R., Magnussen, B.F., "A numerical study of a bluff-body stabilized diffusion flame. part 2. Influence of combustion modeling and finite-rate chemistry", Combust. Sci. Technol., 119 (1-6), 191-217 (1996). 21 Ertesv?g, I.S., Magnussen, B.F., "The eddy dissipation turbulence energy cascade model", Combust. Sci. Technol., 159 (1), 213-235 (2000). 22 Pope, S.B., "Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation", Combus. Theor. Modell., 1 (1), 41-63 (1997). 23 Kumar, A., Mazumder, S., "Adaptation and application of the in situ adaptive tabulation (ISAT) procedure to reacting flow calculations with complex surface chemistry", Comput. Chem. Eng., 35 (7), 1317-1327 (2011). 24 Lu, B., Wang, W., Li, J., "Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows", Chem. Eng. Sci., 64 (15), 3437-3447 (2009). 25 Daunenhofer, J.F., Baron, J.R., "Grid adaption for the 2D Euler equations", In: 23rd Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Reno, Nevada, 14 (17), AIAA-85-0484 (1985) 26 Zhang, N., Chen, B. Z., Qiu, T., "CFD simulation of cracking tube with internal twisted slices", Comput. Aided Chem. Eng., 31, 905-909 (2012). 27 Leathard, D.A., Purnell, J.H., "Paraf?n pyrolysis", Annu. Rev. Phys. Chem., 21 (1), 197-224 (1968). |