1 Miranda, M., Reneaume, J.M., Meyer, X., Meyer, M., Szigeti., F., “Integrating process design and control: An application of optimal control to chemical processes”, Chem. Eng. Proce., 47 (11), 2004-2018 (2008).2 Logist, F., van Erdeghem, P.M.M., van Impe, J.F., “Efficient deterministic multiple objective optimal control of (bio)chemical processes”, Chem. Eng. Sci., 64 (11), 2527-2538 (2009).3 Wozny, G., Garcia, A.H., “Special issue on process optimization and control in chemical engineering and processing”, Chem. Eng. Proce., 46 (11), 1041-1042 (2007).4 Verboven, P., Guillaume, P., Cauberghe, B., “Multivariable frequency response curve fitting with application to model parameter estimation”, Automatica, 41 (8), 1173-1782 (2005).5 Sun, F., Du, W., Qi, R., Qian, F., Zhong, W., “A hybrid improved genetic algorithm and its application in dynamic optimization problems of chemical processes”, Chin. J Chem. Eng., 21 (2), 144-154 (2013). 6 Tavazoei, M.S., “Overshoot in the step response of fractional-order control systems”, J Process Control, 22 (1), 90-94 (2012).7 Tomizuka, M., “Zero phase error tracking algorithm for digital control”, ASME J. Dynamic Syst. Meas. Control, 109 (1), 65-68 (1987).8 Carrasco, D.S., Goodwin, G.C., “Feedforward model predictive control”, Annu. Rev. Control, 35 (2), 199-206 (2011).9 Piccagli, S., Visioli, A., “An optimal feedforward control design for the set-point following of MIMO processes”, J Process Control, 19 (6), 978-984 (2009). 10 Pawlowski, A., Guzmán, J.L., Normey-Rico, J.E., Berenguel. M., “Improving feedforward disturbance compensation capabilities in generalized predictive control”, J Process Control, 22 (3), 527-539 (2012). 11 Chung, C.H., Chen, M.S., “A robust adaptive feedforward control in repetitive control design for linear systems”, Automatica, 48 (1), 183-190 (2012). 12 Upreti, S.R., “A new robust technique for optimal control of chemical engineering processes”, Comput. Chem. Eng., 28 (8), 1325-1336 (2004). 13 Mizumoto, I., Ikeda, D., Hirahata, T., Iwai, Z., “Design of discrete time adaptive PID control systems with parallel feedforward compensator”, Control Eng Pract., 18 (2), 168-176 (2010). 14 Ingimundarson, A., Hägglund, T., “Performance comparison between PID and dead-time compensating controllers”, J Process Control, 12 (8), 887-895 (2002). 15 Piccagli, S., Visioli, A., Khalate, A.A., Bombois, X., Babu?ka, R., Wijshoff, H., Waarsing, R., “Performance improvement of a drop-on-demand inkjet printhead using an optimization-based feedforward control method”, Control Eng Pract., 19 (8), 771-781 (2011). 16 Escobar, M., Trierweiler, J.O., “Multivariable PID controller design for chemical processes by frequency response approximation”, Chem. Eng. Sci., 88 (25), 1-15 (2013). 17 Chen, J., Gu, G.X., “Control oriented system identification: An H∞ approach”, Int. J. Robust Nonlinear Control., 13, 497-498 (2003). 18 Franklin, G.F., Powell, J.D., Emami-Naeini, A., “Feedback Control of Dynamics Systems”, 3rd ed. Reading, MA: Addison-Wesley (1994). 19 Skogestad, S., Postlethwaite, I., Multivariable Feedback Control, Wiley, New York (1996). 20 Zhou, K., Essentials of Robust Control, Prentice-Hall, Englewood Cliffs, NJ (1998). 21 Oppenheim, V., Schafer, R.W., Discrete-time Signal Processing, Prentice-Hall, Englewood Cliffs, NJ (1998). 22 Tsai, K.Y., Hindi, H.A., “DQIT: μ-synthesis without D-scale fitting”, In: Proc. Amer. Control Conf., Anchorage, AK, 493-498 (2002). 23 Karimi, A., Khatibi, H., Longchamp. R., “Robust control of polytopic systems by convex optimization”, Automatica, 43 (8), 1395-1402 (2007). 24 Bhattacharyya, S.P., Chapellat, H., Keel, L.H., Robust Control: The Parametric Approach, Prentice Hall PTR, Upper Saddle River, NJ (1995). 25 Piazzi, A., Visioli, A., “Optimal noncausal set-point regulation of scalar systems”, Automatica, 37 (1), 121-127 (2001). 26 Wang, Y.G., Shao, H.H., “Optimal tuning for PI controller”, Automatica, 36 (1), 147-152 (2000). |