Chinese Journal of Chemical Engineering ›› 2016, Vol. 24 ›› Issue (1): 9-22.DOI: 10.1016/j.cjche.2015.06.005
Xiaolin Zhu, Qiang Zhang, YaoWang, Fei Wei
收稿日期:
2014-09-30
修回日期:
2015-05-21
出版日期:
2016-01-28
发布日期:
2016-02-23
通讯作者:
Qiang Zhang
基金资助:
Supported by the National Natural Science Foundation of China (21306102 and 21422604) and China Postdoctoral Science Foundation (2015M571049).
Xiaolin Zhu, Qiang Zhang, YaoWang, Fei Wei
Received:
2014-09-30
Revised:
2015-05-21
Online:
2016-01-28
Published:
2016-02-23
Contact:
Qiang Zhang
Supported by:
Supported by the National Natural Science Foundation of China (21306102 and 21422604) and China Postdoctoral Science Foundation (2015M571049).
摘要: Gas fluidization has an ability to turn static particles to fluid-like dense flow, which allows greatly improved heat transfer among porous powders and highly efficient solid processing to become reality. As the rising star of current scientific research, some nanoparticles can also be fluidized in the form of agglomerates, with sizes ranging from tens to hundreds of microns. Herein, we have reviewed the recent progress on nanomaterial agglomeration and their fluidization behavior, the assisted techniques to enhance the fluidization of nanomaterials, including some mechanical measures, external fields and improved gas injections, as well as their effects on solid fluidization and mixing behaviors. Most of these techniques are effective in breaking large agglomerates and promoting particulate fluidization, meanwhile, the solid mixing is intensified under assisted fluidization. The applications of nanofluidization in nanostructured material production and sustainable chemical industry are further presented. In summary, the fluidization science of multidimensional, multicomponent and multifunctional particles, theirmulti-phase characterization, and the guideline of fluidized bed coupled process are prerequisites for the sustainable development of fluidized bed based materials, energy and chemical industry.
Xiaolin Zhu, Qiang Zhang, YaoWang, Fei Wei. Review on the nanoparticle fluidization science and technology[J]. Chinese Journal of Chemical Engineering, 2016, 24(1): 9-22.
Xiaolin Zhu, Qiang Zhang, YaoWang, Fei Wei. Review on the nanoparticle fluidization science and technology[J]. Chin.J.Chem.Eng., 2016, 24(1): 9-22.
[1] M. Kwauk, Extending the knowledge base of chemical engineering, China Particuology 3 (2005) 151-164.[2] D. Geldart, Types of gas fluidization, Powder Technol. 7 (1973) 285-292.[3] J.X. Zhu, Z.Q. Yu, Y. Jin, J.R. Grace, A. Issangya, Cocurrent downflow circulating fluidized-bed (downer) reactors-A state-of-the-art review, Can. J. Chem. Eng. 73 (1995) 662-677.[4] H.T. Bi, N. Ellis, I.A. Abba, J.R. Grace, A state-of-the-art review of gas-solid turbulent fluidization, Chem. Eng. Sci. 55 (2000) 4789-4825.[5] H.Z. Li, X.S. Lu, M. Kwauk, Particulatization of gas-solids fluidization, Powder Technol. 137 (2003) 54-62.[6] M. Horio, Fluidization science, its development and future, Particuology 8 (2010) 514-524.[7] Y. Cheng, C.N.Wu, J.X. Zhu, F.Wei, Y. Jin, Downer reactor: from fundamental study to industrial application, Powder Technol. 183 (2008) 364-384.[8] M. Kwauk, J.H. Li, D.J. Liu, Particulate and aggregative fluidization—50 years in retrospect, Powder Technol. 111 (2000) 3-18.[9] W. Zhang, A review of techniques for the process intensification of fluidized bed reactors, Chin. J. Chem. Eng. 17 (2009) 688-702.[10] Q.S. Zhu, H.Z. Li, Status quo and development prospect of magnetizing roasting via fluidized bed for low grade iron ore, CIESC J. 65 (2014) 2437-2442 (in Chinese).[11] J.R. van Ommen, J.M. Valverde, R. Pfeffer, Fluidization of nanopowders: a review, J. Nanoparticle Res. 14 (2012) 737.[12] T. Zhou, Agglomerating Fluidization of Cohesive Particles, China Chemical Industry Press, Beijing, 2009. (in Chinese).[13] T.T. Hu, J.X.Wang, Z.G. Shen, J.F. Chen, Engineering of drug nanoparticles by HGCP for pharmaceutical applications, Particuology 6 (2008) 239-251.[14] C.Z. Li, Y.J. Hu, W.K. Yuan, Nanomaterials synthesized by gas combustion flames: morphology and structure, Particuology 8 (2010) 556-562.[15] G.S. Luo, L. Du, Y.J.Wang, Y.C. Lu, J.H. Xu, Controllable preparation of particles with microfluidics, Particuology 9 (2011) 545-558.[16] W. Wang, R. Xie, X.J. Ju, L.Y. Chu, Recent progress ofmicrofluidic fabrication of noel functional microparticles, CIESC J. 65 (2014) 2555-2562 (In Chinese).[17] W.C. Zhu, G.D. Li, Q. Zhang, L. Xiang, S.L. Zhu, Hydrothermal mass production of MgBO2(OH) nanowhiskers and subsequent thermal conversion to Mg2B2O5 nanorods for biaxially oriented polypropylene resins reinforcement, Powder Technol. 203 (2010) 265-271.[18] Q. Zhang, J.Q. Huang, M.Q. Zhao,W.Z. Qian, F. Wei, Carbon nanotube mass production: principles and processes, ChemSusChem 4 (2011) 864-889.[19] M.Q. Zhao, Q. Zhang, J.Q. Huang, F.Wei, Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides—properties, synthesis, and applications, Adv. Funct. Mater. 22 (2012) 675-694.[20] Y. Wang, G.S. Gu, F. Wei, J. Wu, Fluidization and agglomerate structure of SiO2 nanoparticles, Powder Technol. 124 (2002) 152-159.[21] H.Z. Li, Multi-scale aggregation of particles in gas-solid fluidized beds, China Particuology 2 (2004) 101-106.[22] F.Wei, Q. Zhang,W.Z. Qian, H. Yu, Y.Wang, G.H. Luo, G.H. Xu, D.Z.Wang, The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: a multiscale space-time analysis, Powder Technol. 183 (2008) 10-20.[23] L. de Martín, W.G. Bouwman, J.R. van Ommen, Multidimensional nature of fluidized nanoparticle agglomerates, Langmuir 30 (2014) 12696-12702.[24] L. de Martín, A. Fabre, J.R. van Ommen, The fractal scaling of fluidized nanoparticle agglomerates, Chem. Eng. Sci. 112 (2014) 79-86.[25] Y. Wang, Y. Cheng, Y. Jin, H.T.T. Bi, On impacts of solid properties and operating conditions on the performance of gas-solid fluidization systems, Powder Technol. 172 (2007) 167-176.[26] A. Castellanos, J.M. Valverde, M.A.S. Quintanilla, Aggregation and sedimentation in gas-fluidized beds of cohesive powders, Phys. Rev. E 64 (2001) 041304.[27] C. Huang, Study on the Characteristics of Nano-agglomerate Fluidization(Doctor Dissertation) Tsinghua University, 2008. (In Chinese).[28] K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and contact of elastic solids, Proc. R. Soc. A 324 (1971) 301-313.[29] B.V. Derjaguin, V.M. Muller, Y.P. Toporov, Effect of contact deformations on adhesion of particles, J. Colloid Interface Sci. 53 (1975) 314-326.[30] Y.H. Chen, M.A.S. Quintanilla, J. Yang, J.M. Valverde, R.N. Dave, Pull-off force of coated fine powders under small consolidation, Phys. Rev. E 79 (2009) 041305.[31] Q. Huang, H. Zhang, J. Zhu, Flow properties of fine powders in powder coating, Particuology 8 (2010) 19-27.[32] H. Liu, Y. Li, Q.J. Guo, Fluidization quality improvement for cohesive particles by fine powder coating, Ind. Eng. Chem. Res. 45 (2006) 1805-1810.[33] L.Y. Song, T. Zhou, J.S. Yang, Fluidization behavior of nano-particles by adding coarse particles, Adv. Powder Technol. 20 (2009) 366-370.[34] R.H.Wilhelm, M. Kwauk, Fluidization of solid particles, Chem. Eng. Prog. 44 (1948) 201-218.[35] Z.L. Wang,M. Kwauk, H.Z. Li, Fluidization of fine particles, Chem. Eng. Sci. 53 (1998) 377-395.[36] C. Zhu, Q. Yu, R.N. Dave, R. Pfeffer, Gas fluidization characteristics of nanoparticle agglomerates, AICHE J. 51 (2005) 426-439.[37] J.M. Valverde, M.A.S. Quintanilla, A. Castellanos, D. Lepek, J. Quevedo, R.N. Dave, R. Pfeffer, Fluidization of fine and ultrafine particles using nitrogen and neon as fluidizing gases, AICHE J. 54 (2008) 86-103.[38] H. Liu, L. Zhang, T. Chen, S. Wang, Z. Han, S. Wu, Experimental study on the fluidization behaviors of the superfine particles, Chem. Eng. J. 262 (2015) 579-587.[39] M.R. Tamadondar, R. Zarghami,M. Tahmasebpoor, N.Mostoufi, Characterization of the bubbling fluidization of nanoparticles, Particuology 16 (2014) 75-83.[40] J.M. Valverde, A. Castellanos, Fluidization, bubbling and jamming of nanoparticle agglomerates, Chem. Eng. Sci. 62 (2007) 6947-6956.[41] J.M. Valverde, A. Castellanos, Types of gas fluidization of cohesive granular materials, Phys. Rev. E 75 (2007) 031306.[42] H. Yu, Q.F. Zhang, G.S. Gu, Y. Wang, G.H. Luo, F. Wei, Hydrodynamics and gas mixing in a carbon nanotube agglomerate fluidized bed, AICHE J. 52 (2006) 4110-4123.[43] K. Dasgupta, J.B. Joshi, S. Banerjee, Fluidized bed synthesis of carbon nanotubes—a review, Chem. Eng. J. 171 (2011) 841-869.[44] S. Kaliyaperumal, S. Barghi, L. Briens, S. Rohani, J. Zhu, Fluidization of nano and submicron powders using mechanical vibration, Particuology 9 (2011) 279-287.[45] Z.G. Hao, Q.S. Zhu, Z. Jiang, H.Z. Li, Fluidization characteristics of aerogel Co/Al2O3 catalyst in a magnetic fluidized bed and its application to CH4-CO2 reforming, Powder Technol. 183 (2008) 46-52.[46] S. Kaliyaperumal, S. Barghi, J. Zhu, L. Briens, S. Rohani, Effects of acoustic vibration on nano and sub-micron powders fluidization, Powder Technol. 210 (2011) 143-149.[47] D. Lepek, J.M. Valverde, R. Pfeffer, R.N. Dave, Enhanced nanofluidization by alternating electric fields, AICHE J. 56 (2010) 54-65.[48] J.A. Quevedo, A. Omosebi, R. Pfeffer, Fluidization enhancement of agglomerates of metal oxide nanopowders by microjets, AICHE J. 56 (2010) 1456-1468.[49] T. Zhou, H.Z. Li, Effects of adding different size particles on fluidization of cohesive particles, Powder Technol. 102 (1999) 215-220.[50] C.H. Nam, R. Pfeffer, R.N. Dave, S. Sundaresan, Aerated vibrofluidization of silica nanoparticles, AICHE J. 50 (2004) 1776-1785.[51] X.Z. Liang, H. Duan, J.Wang, T. Zhou, Agglomerate sizes of binary nanoparticlemixtures in a vibro-fluidized bed, Chem. Eng. Technol. 37 (2014) 20-26.[52] H.Wang, T. Zhou, J.S. Yang, J.J.Wang, H. Kage, Y.Mawatari, Model for calculation of agglomerate sizes of nanoparticles in a vibro-fluidized bed, Chem. Eng. Technol. 33 (2010) 388-394.[53] L. Zhou, H. Wang, T. Zhou, K. Li, H. Kage, Y. Mawatari, Model of estimating nanoparticle agglomerate sizes in a vibro-fluidized bed, Adv. Powder Technol. 24 (2013) 311-316.[54] J.S. Yang, T. Zhou, L.Y. Song, Agglomerating vibro-fluidization behavior of nanoparticles, Adv. Powder Technol. 20 (2009) 158-163.[55] E.K. Levy, B. Celeste, Combined effects of mechanical and acoustic vibrations on fluidization of cohesive powders, Powder Technol. 163 (2006) 41-50.[56] W. Zhang, M. Zhao, Fluidisation behaviour of silica nanoparticles under horizontal vibration, J. Exp. Nanosci. 5 (2010) 69-82.[57] M.A.S. Quintanilla, J.M. Valverde, A. Castellanos, D. Lepek, R. Pfeffer, R.N. Dave, Nanofluidization as affected by vibration and electrostatic fields, Chem. Eng. Sci. 63 (2008) 5559-5569.[58] Q. Yu, R.N. Dave, C. Zhu, J.A. Quevedo, R. Pfeffer, Enhanced fluidization of nanoparticles in an oscillating magnetic field, AICHE J. 51 (2005) 1971-1979.[59] L. Zhou, R.L. Diao, T. Zhou, H. Kage, Y. Mawatari, Characteristics of non-magnetic nanoparticles in magnetically fluidized bed by adding coarse magnets, J. Cent. S. Univ. Technol. 18 (2011) 1383-1388 (In Chinese).[60] L. Zhou, F. Zhang, T. Zhou, H. Kage, Y. Mawatari, A model for estimating agglomerate sizes of non-magnetic nanoparticles inmagnetic fluidized beds, Korean J. Chem. Eng. 30 (2013) 501-507.[61] P. Zeng, T. Zhou, J.S. Yang, Behavior of mixtures of nano-particles in magnetically assisted fluidized bed, Chem. Eng. Process. 47 (2008) 101-108.[62] P. Zeng, T. Zhou, G.Q. Chen, Q.S. Zhu, Behavior ofmixed ZnO and SiO2 nano-particles in magnetic field assisted fluidization, China Particuology 5 (2007) 169-173.[63] L. Zhou, R.L. Diao, T. Zhou, H. Wang, H. Kage, Y. Mawatari, Behavior of magnetic Fe3O4 nano-particles in magnetically assisted gas-fluidized beds, Adv. Powder Technol. 22 (2011) 427-432.[64] J.A. Quevedo, J. Flesch, R. Pfeffer, R. Dave, Evaluation of assisting methods on fluidization of hydrophilic nanoagglornerates by monitoring moisture in the gas phase, Chem. Eng. Sci. 62 (2007) 2608-2622.[65] C. Zhu, G.L. Liu, Q. Yu, R. Pfeffer, R.N. Dave, C.H. Nam, Sound assisted fluidization of nanoparticle agglomerates, Powder Technol. 141 (2004) 119-123.[66] Q.J. Guo, H. Liu, W.Z. Shen, X.H. Yan, R.G. Jia, Influence of sound wave characteristics on fluidization behaviors of ultrafine particles, Chem. Eng. J. 119 (2006) 1-9.[67] Q.J. Guo, Y. Li, M.H.Wang,W.Z. Shen, C.H. Yang, Fluidization characteristics of SiO2 nanoparticles in an acoustic fluidized bed, Chem. Eng. Technol. 29 (2006) 78-86.[68] H. Liu, Q.J. Guo, S.A. Chen, Sound-assisted fluidization of SiO2 nanoparticles with different surface properties, Ind. Eng. Chem. Res. 46 (2007) 1345-1349.[69] F. Raganati, P. Ammendola, R. Chirone, Effect of acoustic field on CO2 desorption in a fluidized bed of fine activated carbon, Particuology (2015). http://dx.doi.org/10. 1016/j.partic.2015.02.001.[70] A. Ajbar, Y. Bakhbakhi, S. Ali, M. Asif, Fluidization of nano-powders: effect of sound vibration and pre-mixing with group a particles, Powder Technol. 206 (2011) 327-337.[71] J.W. Jung, D. Gidaspow, Fluidization of nano-size particles, J. Nanoparticle Res. 4 (2002) 483-497.[72] M. Kashyap, D. Gidaspow, M. Driscoll, Effect of electric field on the hydrodynamics of fluidized nanoparticles, Powder Technol. 183 (2008) 441-453.[73] J.M. Valverde, M.A.S. Quintanilla, M.J. Espin, A. Castellanos, Nanofluidization electrostatics, Phys. Rev. E 77 (2008) 031301.[74] J.M. Valverde, M.J. Espin, M.A.S. Quintanilla, A. Castellanos, Electrofluidized bed of silica nanoparticles, J. Electrost. 67 (2009) 439-444.[75] M.J. Espin, J.M. Valverde, M.A.S. Quintanilla, A. Castellanos, Electromechanics of fluidized beds of nanoparticles, Phys. Rev. E 79 (2009) 011304.[76] M.J. Espin, J.M. Valverde, M.A.S. Quintanilla, A. Castellanos, Alternating field electronanofluidization, Powders Grains 2009 (1145) (2009) 97-100.[77] M.A.S. Quintanilla, J.M. Valverde, M.J. Espin, A. Castellanos, Electrofluidization of silica nanoparticle agglomerates, Ind. Eng. Chem. Res. 51 (2012) 531-538.[78] S. Matsuda, H. Hatano, T. Muramoto, A. Tsutsumi, Modeling for size reduction of agglomerates in nanoparticle fluidization, AICHE J. 50 (2004) 2763-2771.[79] J. Quevedo, R. Pfeffer, Y.Y. Shen, R. Dave, H. Nakamura, S. Watano, Fluidization of nanoagglomerates in a rotating fluidized bed, AICHE J. 52 (2006) 2401-2412.[80] H. Nakamura, S.Watano, Fundamental particle fluidization behavior and handling of nano-particles in a rotating fluidized bed, Powder Technol. 183 (2008) 324-332.[81] S.Watano, T. Tokuda, H. Nakamura,Wet granulation of nano-particles in a rotating fluidized bed, Stud. Surf. Sci. Catal. 159 (2006) 485-488.[82] R. Pfeffer, J.A. Quevedo, J. Flesch, Fluidized bed systems and methods including micro-jet flow, USA patent 8439283 (2013).[83] J.A. Quevedo, R. Pfeffer, In situ seasurements of gas gluidized nanoagglomerates, Ind. Eng. Chem. Res. 49 (2010) 5263-5269.[84] S.S. Ali, M. Asif, Fluidization of nano-powders: effect of flow pulsation, Powder Technol. 225 (2012) 86-92.[85] S.S. Ali, M. Asif, A. Ajbar, Bed collapse behavior of pulsed fluidized beds of nanopowder, Adv. Powder Technol. 25 (2014) 331-337.[86] H.K. Bizhaem, H.B. Tabrizi, Experimental study on hydrodynamic characteristics of gas-solid pulsed fluidized bed, Powder Technol. 237 (2013) 14-23.[87] A. Akhavan, J.R. van Ommen, J. Nijenhuis, X.S. Wang, M.O. Coppens, M.J. Rhodes, Improved drying in a pulsation-assisted fluidized bed, Ind. Eng. Chem. Res. 48 (2009) 302-309.[88] P. Ammendola, R. Chirone, F. Raganati, Effect of mixture composition, nanoparticle density and sound intensity on mixing quality of nanopowders, Chem. Eng. Process. 50 (2011) 885-891.[89] P. Ammendola, R. Chirone, Aeration and mixing behaviours of nano-sized powders under sound vibration, Powder Technol. 201 (2010) 49-56.[90] O. Gundogdu, P.M. Jenneson, U. Tuzun, Nano particle fluidisation in model 2D and 3D beds using high speed x-ray imaging and microtomography, J. Nanoparticle Res. 9 (2007) 215-223.[91] C. Huang, Z. Qian, M.H. Zhang, F. Wei, Solids mixing in a down-flow circulating fluidized bed of 0.418-m in diameter, Powder Technol. 161 (2006) 48-52.[92] C. Huang, Y.Wang, F.Wei, Solids mixing behavior in a nano-agglomerate fluidized bed, Powder Technol. 182 (2008) 334-341.[93] L.F. Hakim, J.L. Portman, M.D. Casper, A.W.Weimer, Aggregation behavior of nanoparticles in fluidized beds, Powder Technol. 160 (2005) 149-160.[94] X.Z. Liang, H. Duan, T. Zhou, J.R. Kong, Fluidization behavior of binary mixtures of nanoparticles in vibro-fluidized bed, Adv. Powder Technol. 25 (2014) 236-243.[95] H. Duan, X. Liang, T. Zhou, J. Wang, W. Tang, Fluidization of mixed SiO2 and ZnO nanoparticles by adding coarse particles, Powder Technol. 267 (2014) 315-321.[96] J.V. Scicolone, D. Lepek, L. Louie, R.N. Dave, Fluidization and mixing of nanoparticle agglomerates assisted via magnetic impaction, J. Nanoparticle Res. 15 (2013) 1434.[97] P. Ammendola, R. Chirone, F. Raganati, Fluidization of binary mixtures of nanoparticles under the effect of acoustic fields, Adv. Powder Technol. 22 (2011) 174-183.[98] F. Danafar, A. Fakhru'l-Razi, M.A.M. Salleh, D.R.A. Biak, Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes-a review, Chem. Eng. J. 155 (2009) 37-48.[99] R. Philippe, A. Moranqais, M. Corrias, B. Caussat, Y. Kihn, P. Kalck, D. Plee, P. Gaillard, D. Bernard, P. Serp, Catalytic production of carbon nanotubes by fluidized-bed CVD, Chem. Vap. Depos. 13 (2007) 447-457.[100] C.H. See, A.T. Harris, A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition, Ind. Eng. Chem. Res. 46 (2007) 997-1012.[101] A. Margolin, R. Rosentsveig, A. Albu-Yaron, R. Popovitz-Biro, R. Tenne, Study of the growth mechanism of WS2 nanotubes produced by a fluidized bed reactor, J. Mater. Chem. 14 (2004) 617-624.[102] S.Morooka, T. Okubo, K. Kusakabe, Recent work on fluidized-bed processing of fine particles as advanced materials, Powder Technol. 63 (1990) 105-112.[103] L. Cadoret, N. Reuge, S. Pannala, M. Syamlal, C. Rossignol, J. Dexpert-Ghys, C. Coufort, B. Caussat, Silicon chemical vapor deposition on macro and submicron powders in a fluidized bed, Powder Technol. 190 (2009) 185-191.[104] S. Balaji, J. Du, C.M. White, B.E. Ydstie,Multi-scale modeling and control of fluidized beds for the production of solar grade silicon, Powder Technol. 199 (2010) 23-31.[105] W.O. Filtvedt, M. Javidi, A. Holt, M.C. Melaaen, E. Marstein, H. Tathgar, P.A. Ramachandran, Development of fluidized bed reactors for silicon production, Sol. Energy Mater. Sol. Cells 94 (2010) 1980-1995.[106] Y. Wang, Y.H. Wo, K.H. Yao, H.L. Zhu, N.Y. Wang, Cvd synthesis of silicon nitride (sin) nanopowders in a novel two-stage fluidized bed reactor, J. Inorg. Mater. 21 (2006) 41-45.[107] P. Cai, L.F. Chen, J. van Egmond, M. Tilston, Some recent advances in fluidized-bed polymerization technology, Particuology 8 (2010) 578-581.[108] M.Q. Zhao, Q. Zhang, J.Q. Huang, G.L. Tian, J.Q. Nie, H.J. Peng, F. Wei, Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries, Nat. Commun. 5 (2014) 3410.[109] G.Q. Ning, Z.J. Fan, G. Wang, J.S. Gao, W.Z. Qian, F. Wei, Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes, Chem. Commun. 47 (2011) 5976-5978.[110] X.H. Liang, G.D. Zhan, D.M. King, J.A. McCormick, J. Zhang, S.M. George, A.W. Weimer, Alumina atomic layer deposition nanocoatings on primary diamond particles using a fluidized bed reactor, Diam. Relat. Mater. 17 (2008) 185-189.[111] F. Grillo, M.T. Kreutzer, J.R. van Ommen, Modeling the precursor utilization in atomic layer deposition on nanostructured materials in fluidized bed reactors, Chem. Eng. J. 268 (2015) 384-398.[112] L.F. Hakim, J. Blackson, S.M. George, A.W. Weimer, Nanocoating individual silica nanoparticles by atomic layer deposition in a fluidized bed reactor, Chem. Vap. Depos. 11 (2005) 420-425.[113] J.D. Ferguson, K.J. Buechler, A.W. Weimer, S.M. George, SnO2 atomic layer deposition on ZrO2 and Al nanoparticles: pathway to enhanced thermite materials, Powder Technol. 156 (2005) 154-163.[114] D.M. King, X.H. Liang, Y. Zhou, C.S. Carney, L.F. Hakim, P. Li, A.W. Weimer, Atomic layer deposition of TiO2 films on particles in a fluidized bed reactor, Powder Technol. 183 (2008) 356-363.[115] J.R. Scheffe, A. Frances, D.M. King, X.H. Liang, B.A. Branch, A.S. Cavanagh, S.M. George, A.W.Weimer, Atomic layer deposition of iron(iii) oxide on zirconia nanoparticles in a fluidized bed reactor using ferrocene and oxygen, Thin Solid Films 517 (2009) 1874-1879.[116] J.L. Li, G.H. Chen, P. Zhang, W.W. Wang, J.H. Duan, Technical challenges and progress in fluidized bed chemical vapor deposition of polysilicon, Chin. J. Chem. Eng. 19 (2011) 747-753.[117] C.J. Wang, T.F. Wang, P.L. Li, Z.W. Wang, Recycling of SiCl4 in the manufacture of granular polysilicon in a fluidized bed reactor, Chem. Eng. J. 220 (2013) 81-88.[118] C. Soria-Hoyo, J. Valverde, J. van Ommen, P. Sánchez-Jiménez, L. Pérez-Maqueda, M. Sayagués, Synthesis of a nanosilica supported CO2 sorbent in a fluidized bed reactor, Appl. Surf. Sci. 328 (2015) 548-553.[119] J. Li, X. Liu, L. Zhou, Q. Zhu, H. Li, A two-stage reduction process for the production of high-purity ultrafine Ni particles in a micro-fluidized bed reactor, Particuology 19 (2014) 27-34.[120] Y. Wang, F. Wei, G.H. Luo, H. Yu, G.S. Gu, The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor, Chem. Phys. Lett. 364 (2002) 568-572.[121] J.Q. Huang, Q. Zhang, M.Q. Zhao, F. Wei, A review of the large-scale production of carbon nanotubes: the practice of nanoscale process engineering, Chin. Sci. Bull. 57 (2012) 157-166.[122] Q. Zhang, J.Q. Huang, W.Z. Qian, Y.Y. Zhang, F. Wei, The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage, Small 9 (2013) 1237-1265.[123] Y. Hao, Q.F. Zhang, F.Wei,W.Z. Qian, G.H. Luo, Agglomerated CNTs synthesized in a fluidized bed reactor: agglomerate structure and formation mechanism, Carbon 41 (2003) 2855-2863.[124] Y. Liu, W.Z. Qian, Q. Zhang, G.Q. Ning, Q. Wen, G.H. Luo, F. Wei, The confined growth of double-walled carbon nanotubes in porous catalysts by chemical vapor deposition, Carbon 46 (2008) 1860-1868.[125] M.Q. Zhao, Q. Zhang, J.Q. Huang, J.Q. Nie, F. Wei, Layered double hydroxides as catalysts for the efficient growth of high quality single-walled carbon nanotubes in a fluidized bed reactor, Carbon 48 (2010) 3260-3270.[126] M.Q. Zhao, Q. Zhang, X.L. Jia, J.Q. Huang, Y.H. Zhang, F. Wei, Hierarchical composites of single/double-walled carbon nanotubes interlinked flakes from direct carbon deposition on layered double hydroxides, Adv. Funct. Mater. 20 (2010) 677-685.[127] Q. Zhang, W.P. Zhou, W.Z. Qian, R. Xiang, J.Q. Huang, D.Z. Wang, F. Wei, Synchronous growth of vertically aligned carbon nanotubes with pristine stress in the heterogeneous catalysis process, J. Phys. Chem. C 111 (2007) 14638-14643.[128] J.Q. Huang, Q. Zhang, G.H. Xu, W.Z. Qian, F. Wei, Substrate morphology induced self-organization into carbon nanotube arrays, ropes, and agglomerates, Nanotechnology 19 (2008) 435602.[129] Q. Zhang, J.Q. Huang, M.Q. Zhao, W.Z. Qian, Y. Wang, F. Wei, Radial growth of vertically aligned carbon nanotube arrays from ethylene on ceramic spheres, Carbon 46 (2008) 1152-1158.[130] Q. Zhang, W.Z. Qian, R. Xiang, Z. Yang, G.H. Luo, Y. Wang, F.Wei, In situ growth of carbon nanotubes on inorganic fibers with different surface properties, Mater. Chem. Phys. 107 (2008) 317-321.[131] Q. Zhang,M.Q. Zhao, D.M. Tang, F. Li, J.Q.Huang, B.L. Liu,W.C. Zhu, Y.H. Zhang, F.Wei, Carbon-nanotube-array double helices, Angew. Chem. Int. Ed. 49 (2010) 3642-3645.[132] M.Q. Zhao, Q. Zhang, W. Zhang, J.Q. Huang, Y.H. Zhang, D.S. Su, F. Wei, Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides, J. Am. Chem. Soc. 132 (2010) 14739-14741.[133] M.Q. Zhao, J.Q. Huang, Q. Zhang, J.Q. Nie, F. Wei, Stretchable single-walled carbon nanotube double helices derived from molybdenum-containing layered double hydroxides, Carbon 49 (2011) 2148-2152.[134] M.Q. Zhao, Q. Zhang, G.L. Tian, F. Wei, Emerging double helical nanostructures, Nanoscale 6 (2014) 9339-9354.[135] Q. Zhang, M.Q. Zhao, Y. Liu, A.Y. Cao, W.Z. Qian, Y.F. Lu, F. Wei, Energy-absorbing hybrid composites based on alternate carbon-nanotube and inorganic layers, Adv. Mater. 21 (2009) 2876-2880.[136] Q. Zhang, M.Q. Zhao, J.Q. Huang, Y. Liu, Y. Wang, W.Z. Qian, F. Wei, Vertically aligned carbon nanotube arrays grown on a lamellar catalyst by fluidized bed catalytic chemical vapor deposition, Carbon 47 (2009) 2600-2610.[137] Q. Zhang,M.Q. Zhao, J.Q. Huang, J.Q. Nie, F. Wei, Mass production of aligned carbon nanotube arrays by fluidized bed catalytic chemical vapor deposition, Carbon 48 (2010) 1196-1209.[138] C.M. Chen, Q.H. Yang, Y.G. Yang, W. Lv, Y.F.Wen, P.X. Hou, M.Z.Wang, H.M. Cheng, Self-assembled free-standing graphite oxide membrane, Adv. Mater. 21 (2009) 3007-3011.[139] H. Bai, C. Li, G.Q. Shi, Functional composite materials based on chemically converted graphene, Adv. Mater. 23 (2011) 1089-1115.[140] J.-L. Shi, H.-J. Peng, L. Zhu,W. Zhu, Q. Zhang, Template growth of porous graphene microspheres on layered double oxide catalysts and their applications in lithium-sulfur batteries, Carbon 92 (2015) 96-105.[141] M.Q. Zhao, H.J. Peng, Q. Zhang, J.Q. Huang, G.L. Tian, C. Tang, L. Hu, H.R. Jiang, H.Y. Cai, H.X. Yuan, F. Wei, Controllable bulk growth of few-layer graphene/singlewalled carbon nanotube hybrids containing Fe@C nanoparticles in a fluidized bed reactor, Carbon 67 (2014) 554-563.[142] J. Li, T. Ma, L. Zhou, T. Zhang, Q.S. Zhu, H.Z. Li, Synthesis of fullerene-like WS2 nanoparticles in a particulately fluidized bed: Kinetics and reaction phase diagram, Ind. Eng. Chem. Res. 53 (2014) 592-600.[143] J. Li, L. Zhou, Q. Zhu, H. Li, Decoupling reduction-sulfurization synthesis of inorganic fullerene-like WS2 nanoparticles in a particulately fluidized bed, Chem. Eng. J. 249 (2014) 54-62.[144] C.N.Wu, B.H. Yan, Y. Jin, Y. Cheng, Modeling and simulation of chemically reacting flows in gas-solid catalytic and non-catalytic processes, Particuology 8 (2010) 525-530.[145] Y. Cheng, J.Q. Chen,Y.L.Ding,X.Y. Xiong, Y. Jin, Inleteffectonthecoal pyrolysis toacetylene in a hydrogen plasma downer reactor, Can. J. Chem. Eng. 86 (2008) 413-420.[146] F.X. Li, L.S. Fan, Clean coal conversion processes—progress and challenges, Energy Environ. Sci. 1 (2008) 248-267.[147] M.H. Han, P.T. Chang, G.S. Hu, Z.T. Chen, D.Z.Wang, F.Wei, Conversion of hydrogen chloride to chlorine by catalytic oxidation in a two-zone circulating fluidized bed reactor, Chem. Eng. Process. 50 (2011) 593-598.[148] Y. Cui, Q. Zhang, J. He, Y.Wang, F.Wei, Pore-structure-mediated hierarchical SAPO-34: facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins, Particuology 11 (2013) 468-474.[149] J. Zhu, Y. Cui, Y.Wang, F.Wei, Direct synthesis of hierarchical zeolite froma natural layered material, Chem. Commun. (2009) 3282-3284.[150] Y. Wang, Z.X. Di, Y.X. Li, D.Z. Wang, F. Wei, Multiphase catalytic reactors for methanol-to-olefins, CIESC J. 65 (2014) 2472-2484 (in Chinese).[151] J. Li, L. Zhou, P.C. Li, Q.S. Zhu, J.J. Gao, F.N. Gu, F.B. Su, Enhanced fluidized bedmethanation over a Ni/Al2O3 catalyst for production of synthetic natural gas, Chem. Eng. J. 219 (2013) 183-189.[152] J. Li, L. Zhou, Q.S. Zhu, H.Z. Li, Enhanced methanation over aerogel NiCo/Al2O3 catalyst in a magnetic fluidized bed, Ind. Eng. Chem. Res. 52 (2013) 6647-6654.[153] A.S. Al-Fatesh, M.A. Naeem, H. Fakeeha, A.E. Abasaeed, Role of La2O3 as promoter and support in Ni/γ-Al2O3 catalysts for dry reforming of methane, Chin. J. Chem. Eng. 22 (2014) 28-37.[154] J.J. Ding, H.Y. Liu, P. Yuan, G. Shi, X.J. Bao, Catalytic properties of a hierarchical zeolite synthesized from a natural aluminosilicate mineral without the use of a secondary mesoscale template, ChemCatChem 5 (2013) 2258-2269.[155] J. Li, X.Y. Li, G.Q. Zhou,W.Wang, C.W.Wang, S. Komarneni, Y.J.Wang, Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions, Appl. Catal. A 470 (2014) 115-122.[156] L.S. Fan, L. Zeng,W.L.Wang, S.W. Luo, Chemical looping processes for CO2 capture and carbonaceous fuel conversion—prospect and opportunity, Energy Environ. Sci. 5 (2012) 7254-7280.[157] Y.Z. Liu, Q.J. Guo, Investigation into syngas generation from solid fuel using CaSO4-based chemical looping gasification process, Chin. J. Chem. Eng. 21 (2013) 127-134.[158] J.M. Valverde, Ca-based synthetic materials with enhanced CO2 capture efficiency, J. Mater. Chem. A 1 (2013) 447-468. |
[1] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene[J]. 中国化学工程学报, 2023, 60(8): 90-98. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions[J]. 中国化学工程学报, 2023, 60(8): 108-117. |
[3] | Wenting Fan, Fang Zhao, Ming Chen, Jian Li, Xuhong Guo. An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles[J]. 中国化学工程学报, 2023, 59(7): 85-91. |
[4] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions[J]. 中国化学工程学报, 2023, 59(7): 200-209. |
[5] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution[J]. 中国化学工程学报, 2023, 58(6): 76-88. |
[6] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater[J]. 中国化学工程学报, 2023, 58(6): 124-136. |
[7] | Aneela Sabir, Wail Falath, Muhammad Shafiq, Nafisa Gull, Maria Wasim, Karl I. Jacob. Effective desalination and anti-biofouling performance via surface immobilized MWCNTs on RO membrane[J]. 中国化学工程学报, 2023, 56(4): 33-45. |
[8] | Jingran Liu, Yue Wu, Jie Tang, Tao Wang, Feng Ni, Qiumin Wu, Xijiao Yang, Ayyaz Ahmad, Naveed Ramzan, Yisheng Xu. Polymeric assembled nanoparticles through kinetic stabilization by confined impingement jets dilution mixer for fluorescence switching imaging[J]. 中国化学工程学报, 2023, 56(4): 89-96. |
[9] | Xiaoping Li, Jiaxin Pan, Jinwen Shi, Yanlin Chai, Songwei Hu, Qiaorong Han, Yanming Zhang, Xianwen Li, Dengwei Jing. Nanoparticle-induced drag reduction for polyacrylamide in turbulent flow with high Reynolds numbers[J]. 中国化学工程学报, 2023, 56(4): 290-298. |
[10] | Lianlian Zhao, Fufu Di, Xiaonan Wang, Sumbal Farid, Suzhen Ren. Constructing a hollow core-shell structure of RuO2 wrapped by hierarchical porous carbon shell with Ru NPs loading for supercapacitor[J]. 中国化学工程学报, 2023, 55(3): 93-100. |
[11] | Xueqing Chen, Weiqun Gao, Yan Sun, Xiaoyan Dong. Multiple effects of polydopamine nanoparticles on Cu2+-mediated Alzheimer's β-amyloid aggregation[J]. 中国化学工程学报, 2023, 54(2): 144-152. |
[12] | Lijian Shi, Yaping Zhang, Yujia Tong, Wenlong Ding, Weixing Li. Plant-inspired biomimetic hybrid PVDF membrane co-deposited by tea polyphenols and 3-amino-propyl-triethoxysilane for high-efficiency oil-in-water emulsion separation[J]. 中国化学工程学报, 2023, 53(1): 170-180. |
[13] | Wenjun Zhang, Wenshu Ge, Min Li, Shuangqing Li, Minqiang Jiang, Xiujuan Zhang, Gaohong He. Short review on liquid membrane technology and their applications in biochemical engineering[J]. 中国化学工程学报, 2022, 49(9): 21-33. |
[14] | Baolong Niu, Min Li, Jianhong Jia, Lixuan Ren, Xin Gang, Bin Nie, Yanying Fan, Xiaojie Lian, Wenfeng Li. Preparation and functional study of pH-sensitive amorphous calcium phosphate nanocarriers[J]. 中国化学工程学报, 2022, 48(8): 244-252. |
[15] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries[J]. 中国化学工程学报, 2022, 47(7): 185-192. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||