[1] G.A. Tokaty, A History and Philosophy of Fluid Mechanics, Dover Publications Inc., New York, 1971.
[2] J.H. Waite, X. Qin, Polyphosphoprotein from the adhesive pads of Mytilus edulis, Biochemistry 40 (9) (2001) 2887-2893.
[3] K. Kamino, Barnacle underwater attachment, in: A.M. Smith, J.A. Callow (Eds.), Biological Adhesives, Springer, Berlin, Heidelberg 2006, pp. 145-166.
[4] H. Shao, K.N. Bachus, R.J. Stewart, A water-borne adhesive modeled after sandcastle glue of P. california, Macromol. Biosci. 9 (5) (2009) 464-471.
[5] S. Dimartino, D.M. Savory, A.J. McQuillan, Preparation of biological samples for the study of wet-resistant adhesives inspired by kelps, Proceedings of the Annual Australasian Chemical Engineering Conference (Chemeca 2014), 2014 (Full Paper 1109 (on CD Rom)).
[6] Z.F. Cui, X. Xu, N. Trainor, J.T. Triffitt, J.P.G. Urban, U. Tirlapur, Application ofmultiple parallel perfused microbioreactors and three-dimensional stem cell culture for toxicity testing, Toxicol. in Vitro 21 (7) (2007) 1318-1324.
[7] M.H.Wu, S.B. Huang, Z. Cui, Z. Cui, G.-B. Lee, Development of perfusion-basedmicro 3-D cell culture platform and its application for high throughput drug testing, Sensors Actuators B Chem. 129 (1) (2008) 231-240.
[8] H. Yang, Y. Jie, Uptake and transport of calcium in plants, J. Plant Physiol. Mol. Biol 31 (3) (2005) 227-230.
[9] J.R. van Ommen, J. Nijenhuis, C.M. van den Bleek,M.-O. Coppens, Four ways to introduce structure in fluidized bed reactors, Ind. Eng. Chem. Res. 46 (2007) 4236-4244.
[10] D. Christensen, J. Nijenhuis, J.R. van Ommen, M.-O. Coppens, Influence of distributed secondary gas injection on the performance of a bubbling fluidized-bed reactor, Ind. Eng. Chem. Res. 47 (2008) 3601-3618.
[11] M.-O. Coppens, A nature-inspired approach to reactor and catalysis engineering, Curr. Opin. Chem. Eng. 1 (2012) 281-289.
[12] M.-O. Coppens, Scaling-up and-down in a nature-inspired way, Ind. Eng. Chem. Res. 44 (2005) 5011-5019.
[13] O.H. Shapiro, V.I. Fernandez, M. Garren, J.S. Guasto, F.P. Debaillon-Vesque, E. Kramarsky-Winter, A. Vardi, R. Stocker, Vortical ciliary flows actively enhance mass transport in reef corals, PNAS 111 (37) (2014) 13391-13396.
[14] X. Zeng, M.K. Danquah, X.D. Chen, Y. Lu, Microalgae bioengineering: from CO2 fixation to biofuel production, Renew. Sust. Energ. Rev. 15 (6) (2011) 3252-3260.
[15] X. Zeng, M.K. Danquah, S. Zhang, X. Zhang, M.Wu, X.D. Chen, K. Jing, I.-S. Ng, Y. Lu, Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production, Chem. Eng. J. 183 (2012) 192-197.
[16] L.Z. Chen, S.K. Nguang, X.D. Chen, Modeling and Optimization of Biological Processes, Springer-Verlag, Berlin, 2006. (3-540-30634).
[17] X.D. Chen, J.Y. Yoo, Food engineering—an advancing branch of chemical engineering, Int. J. Food Eng. (2006) (http://www.bepress.com/ijfe/vol2/iss2/art1).
[18] C. Krul, A. Luiten-Schuite, R. Baan, H. Verhagen, G. Mohn, V. Feron, R. Havenaar, Research section: application of a dynamic in vitro gastrointestinal tractmodel to study the availability of foodmutagens, using heterocyclic aromatic amines asmodel compounds, Food Chem. Toxicol. 38 (2000) 783-792.
[19] C.A.M. Krul, Mutagenic and antimutagenic activity of food compounds, application of a dynamic in vitro gastrointestinal model, NCA (Netherlands Center Alternatives to Animal Use) Newsl. 14 (2003) 2-4.
[20] C.A.M. Krul, M.J. Zeilmaker, R.C. Schothorst, R. Havenaar, Intragastric formation and modulation of N-nitrosodimethylamine in a dynamic in vitro gastrointestinal model under human physiological conditions, Food Chem. Toxicol. 42 (2004) 51-63.
[21] F. Kong, R.P. Singh, Disintegration of solid foods in human stomach, J. Food Sci. 73 (2008) 67-80.
[22] F. Kong, R.P. Singh, Digestion of raw and roasted almonds in simulated gastric environment, Food Biophys. 4 (2009) 365-377.
[23] F. Kong, R.P. Singh, A human gastric simulator (HGS) to study food digestion in human stomach, J. Food Sci. 75 (2010) 627-635.
[24] X.D. Chen, Adventures in the developments of "near real" physical-chemical in-vitro GI systems for food applications, Proceedings of the International Congress on Food Engineering and Technology (IFET 2012), March 26-28, 2013, Bangkok, Thailand, 2012 (Keynote paper; on CD Rom).
[25] L. Chen, A. Jayemanne, X.D. Chen, Venturing into an in vitro physiological upper GI System focusing on the motility effect provided by a mechanised rat stomach model, Food. Dig. 1-9 (2012), http://dx.doi.org/10.1007/s13228-012-0018-9 (July issue).
[26] L. Chen, X.Wu, X.D. Chen, Comparison between the digestive behaviors of a new in vitro rat soft stomachmodel with that of the in vivo experimentation on living rats—motility and morphological influences, J. Food Eng. 117 (2) (2013) 183-192.
[27] L. Chen, The Development and the Preliminary Application of the In Vitro Rat/Human Stomach(PhD Thesis) Department of Chemical and Biochemical Engineering, Xiamen University, Fujian, China, 2013.
[28] R.G. Lentle, P.W.M. Janssen, The Physical Processes of Digestion, Springer, New York, 2011.
[29] R. Deng, L. Pang, Y. Xu, L. Li, X.Wu, X.D. Chen, Investigation on a soft tubular model reactor based on bionics of small intestine—residence time distribution, International Journal of Food Engineering, De Gruyter, 2014, http://dx.doi.org/10.1515/ijfe-2014-0048. |