中国化学工程学报 ›› 2021, Vol. 29 ›› Issue (2): 14-28.DOI: 10.1016/j.cjche.2020.12.014
• Synthetic Biotechnology and Metabolic Engineering • 上一篇 下一篇
Yang Zhang, Jing Yu, Yilu Wu, Mingda Li, Yuxuan Zhao, Haowen Zhu, Changjing Chen, Meng Wang, Biqiang Chen, Tianwei Tan
收稿日期:
2020-10-14
修回日期:
2020-12-16
出版日期:
2021-02-28
发布日期:
2021-05-15
通讯作者:
Tianwei Tan
基金资助:
Yang Zhang, Jing Yu, Yilu Wu, Mingda Li, Yuxuan Zhao, Haowen Zhu, Changjing Chen, Meng Wang, Biqiang Chen, Tianwei Tan
Received:
2020-10-14
Revised:
2020-12-16
Online:
2021-02-28
Published:
2021-05-15
Contact:
Tianwei Tan
Supported by:
摘要: The use of traditional chemical catalysis to produce chemicals has a series of drawbacks, such as high dependence on fossil resources, high energy consumption, and environmental pollution. With the development of synthetic biology and metabolic engineering, the use of renewable biomass raw materials for chemicals synthesis by constructing efficient microbial cell factories is a green way to replace traditional chemical catalysis and traditional microbial fermentation. This review mainly summarizes several types of bulk chemicals and high value-added chemicals using metabolic engineering and synthetic biology strategies to achieve efficient microbial production. In addition, this review also summarizes several strategies for effectively regulating microbial cell metabolism. These strategies can achieve the coupling balance of material and energy by regulating intracellular material metabolism or energy metabolism, and promote the efficient production of target chemicals by microorganisms.
Yang Zhang, Jing Yu, Yilu Wu, Mingda Li, Yuxuan Zhao, Haowen Zhu, Changjing Chen, Meng Wang, Biqiang Chen, Tianwei Tan. Efficient production of chemicals from microorganism by metabolic engineering and synthetic biology[J]. 中国化学工程学报, 2021, 29(2): 14-28.
Yang Zhang, Jing Yu, Yilu Wu, Mingda Li, Yuxuan Zhao, Haowen Zhu, Changjing Chen, Meng Wang, Biqiang Chen, Tianwei Tan. Efficient production of chemicals from microorganism by metabolic engineering and synthetic biology[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 14-28.
[1] J. Becker, C. Wittmann, Advanced biotechnology: Metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products, Angew. Chem. Int. Ed. 54 (11) (2015) 3328–3350. [2] K. Baritugo, H.T. Kim, Y. David, J.H. Choi, J. Choi, T.W. Kim, C. Park, S.H. Hong, J. G. Na, K.J. Jeong, J.C. Joo, S.J. Park, Recent advances in metabolic engineering of Corynebacterium glutamicum strains as potential platform microorganisms for biorefinery, Biofuels, Bioprod. Bioref. 12 (5) (2018) 899–925. [3] K. Baritugo, H.T. Kim, Y. David, J. Choi, S.H. Hong, K.J. Jeong, J.C. Joo, S.J. Park, Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery, Appl. Microbiol. Biotechnol. 102 (2018) 3915–3937. [4] A.S. Khalil, J.J. Collins, Synthetic biology: applications come of age, Nat. Rev. Genet. 11 (5) (2010) 367–379. [5] C.J. Paddon, J.D. Keasling, Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development, Nat. Rev. Microbiol. 12 (5) (2014) 355–367. [6] C.E. Nakamura, G.M. Whited, Metabolic engineering for the microbial production of 1, 3-propanediol, Curr. Opin. Biotechnol. 14 (5) (2003) 454–459. [7] X. Chen, S. Li, L. Liu, Engineering redox balance through cofactor systems, Trends Biotechnol. 32 (6) (2014) 337–343. [8] Y. Wang, K.Y. San, G.N. Bennett, Cofactor engineering for advancing chemical biotechnology, Curr. Opin. Biotechnol. 24 (6) (2013) 994–999. [9] H. Zhao, W.A. Van Der Donk, Regeneration of cofactors for use in biocatalysis, Curr. Opin. Biotechnol. 14 (6) (2003) 583–589. [10] M. Wang, G. Wang, T. Zhang, L. Fan, T. Tan, Multi-modular engineering of 1, 3-propanediol biosynthesis system in Klebsiella pneumoniae from co-substrate, Appl. Microbiol. Biotechnol. 101 (2) (2017) 647–657. [11] H.J. Liu, D.J. Zhang, Y.H. Xu, Y. Mu, Y.Q. Sun, Z.L. Xiu, Microbial production of 1, 3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale, Biotechnol. Lett. 29 (8) (2007) 1281–1285. [12] C.S. Lee, M.K. Aroua, W.M.A.W. Daud, P. Cognet, Y. Pérès-Lucchese, P.L. Fabre, O. Reynes, L. Latapie, A review: conversion of bioglycerol into 1, 3-propanediol via biological and chemical method, Renew. Sustain. Energy Rev. 42 (2015) 963–972. [13] A. Li, Z. Wen, D. Fang, M. Lu, Y. Ma, Q. Xie, M. Jin, Developing Clostridium diolis as a biorefinery chassis by genetic manipulation, Bioresour. Technol. 305 (2020) 123066. [14] S. Maina, V. Kachrimanidou, D. Ladakis, S. Papanikolaou, A.M. de Castro, A. Koutinas, Evaluation of 1, 3-propanediol production by two Citrobacter freundiistrains using crude glycerol and soybean cake hydrolysate, Environ. Sci. Pollut. Res. 26 (35) (2019) 35523–35532. [15] J.H.D. Ju, S.Y. Wang, M.S. Heo, J.W. Kim, Y.M. Seo, Dae-Hyuk Kim, Soon-Ah Kim, Chul-Ho Kang, B.R. Kim, Oh Enhancement of 1, 3-propanediol production from industrial by-product by Lactobacillus reuteri CH53, Microbial. Cell Factories 19 (1) (2020) 1–10. [16] L. Zhao, Y. Zheng, X. Ma, D. Wei, Effects of over-expression of glycerol dehydrogenase and 1, 3-propanediol oxidoreductase on bioconversion of glycerol into 1, 3-propandediol by Klebsiella pneumoniae under micro-aerobic conditions, Bioprocess Biosyst. Eng. 32 (3) (2009) 313–320. [17] Z. Wu, Z. Wang, G. Wang, T. Tan, Improved 1, 3-propanediol production by engineering the 2, 3-butanediol and formic acid pathways in integrative recombinant Klebsiella pneumoniae, J. Biotechnol. 168 (2) (2013) 194–200. [18] Z. Rao, Z. Ma, W. Shen, H. Fang, J. Zhuge, X. Wang, Engineered Saccharomyces cerevisiae that produces 1, 3-propanediol from d-glucose, J. Appl. Microbiol. 105 (6) (2008) 1768–1776. [19] Z. Chen, F. Geng, A.P. Zeng, Protein design and engineering of a de novo pathway for microbial production of 1, 3-propanediol from glucose, Biotechnol. J. 10 (2) (2015) 284–289. [20] W. Zhong, Y. Zhang, W. Wu, D. Liu, Z. Chen, Metabolic engineering of a homoserine-derived non-natural pathway for the de novo production of 1, 3-propanediol from glucose, ACS Synth. Biol. 8 (3) (2019) 587–595. [21] C.J. Frazão, D. Trichez, H. Serrano-Bataille, A. Dagkesamanskaia, C.M. Topham, T. Walther, J.M. François, Construction of a synthetic pathway for the production of 1, 3-propanediol from glucose, Sci. Rep. 9 (1) (2019) 1–12. [22] C. Wang, J. Ren, L. Zhou, Z. Li, L. Chen, A.P. Zeng, An Aldolase-catalyzed new metabolic pathway for the assimilation of formaldehyde and methanol to synthesize 2-keto-4-hydroxybutyrate and 1, 3-propanediol in Escherichia coli, ACS Synth. Biol. 8 (11) (2019) 2483–2493. [23] A. Burgard, M.J. Burk, R. Osterhout, S. Van Dien, H. Yim, Development of a commercial scale process for production of 1, 4-butanediol from sugar, Curr. Opin. Biotechnol. 42 (2016) 118–125. [24] H. Yim, R. Haselbeck, et al., Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol, Nat. Chem. Biol. 7 (7) (2011) 445–452. [25] Y.S. Tai, M. Xiong, P. Jambunathan, J. Wang, J. Wang, C. Stapleton, K. Zhang, Engineering nonphosphorylative metabolism to generate lignocellulosederived products, Nat. Chem. Biol. 12 (4) (2016) 247–253. [26] H. Liu, T. Lu, Autonomous production of 1, 4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli, Metab. Eng. 29 (2015) 135–141. [27] J. Wang, R. Jain, et al., Rational engineering of diol dehydratase enables 1, 4-butanediol biosynthesis from xylose, Metab. Eng. 40 (2017) 148–156. [28] Y. Zhang, D. Liu, Z. Chen, Production of C2–C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies, Biotechnol. Biofuels 10 (1) (2017) 299. [29] H.J. Hwang, J.H. Park, et al., Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1, 4-butanediol pathway in Escherichia coli, Biotechnol. Bioeng. 111 (7) (2014) 1374–1384. [30] J.L. Yu, X.X. Xia, J.J. Zhong, Z.G. Qian, A novel synthetic pathway for glutarate production in recombinant Escherichia coli, Process Biochem. 59 (2017) 167–171. [31] J. Wang, Y. Wu, X. Sun, Q. Yuan, Y. De Yan, Novo biosynthesis of glutarate via α-keto acid carbon chain extension and decarboxylation pathway in Escherichia coli, ACS Synth. Biol. 6 (10) (2017) 1922–1930. [32] J.C. Fothergill, J.R. Guest, Catabolism of L-lysine by Pseudomonas aeruginosa, Microbiology 99 (1) (1977) 139–155. [33] O. Revelles, M. Espinosa-Urgel, T. Fuhrer, U. Sauer, J.L. Ramos, Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440, J. Bacteriol. 187 (21) (2005) 7500–7510. [34] W. Li, L. Ma, et al., Targeting metabolic driving and intermediate influx in lysine catabolism for high-level glutarate production, Nat. Commun. 10 (1) (2019) 1–8. [35] X. Wang, R. Su, K. Chen, S. Xu, J. Feng, P. Ouyang, Engineering a microbial consortium based whole-cell system for efficient production of glutarate from L-lysine, Front. Microbiol. 10 (2019) 341. [36] H.T. Kim, T.U. Khang, et al., Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical, Metab. Eng. 51 (2019) 99–109. [37] C.M. Rohles et al., A bio-based route to the carbon-5 chemical glutaric acid and to bionylon-6, 5 using metabolically engineered Corynebacterium glutamicum, Green Chem. 20 (20) (2018) 4662–4674. [38] F. Pérez-García, J.M. Jorge, A. Dreyszas, J.M. Risse, V.F. Wendisch, Efficient production of the dicarboxylic acid glutarate by Corynebacterium glutamicum via a novel synthetic pathway, Front. Microbiol. 9 (2018) 2589. [39] M. Zhao, G. Li, Y. Deng, Engineering Escherichia coli for glutarate production as the C5 platform backbone, Appl. Environ. Microbiol. 84 (16) (2018), https://doi.org/10.1128/AEM.00814-18. [40] A. Kuenz, Y. Gallenmüller, T. Willke, K.D. Vorlop, Microbial production of itaconic acid: developing a stable platform for high product concentrations, Appl. Microbiol. Biotechnol. 96 (2012) 1209–1216. [41] M.G. Steiger, P.J. Punt, A.F. Ram, D. Mattanovich, Sauer, Characterizing MttA as a mitochondrial cis-aconitic acid transporter by metabolic engineering, Metab. Eng. 35 (2016) 95–104. [42] A. Li, L.N. Van, B.M. Ter, M. Caspers, P. Punt, M. van der Werf, A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus, Fungal Genet. Biol. 48 (2011) 602–611. [43] E. Geiser, S.K. Przybilla, A. Friedrich, W. Buckel, N. Wierckx, L.M. Blank, M. Bölker, Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate, Microb. Biotechnol. 9 (2016) 116–126. [44] M. Okabe, D. Lies, S. Kanamasa, E.Y. Park, Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus, Appl. Microbiol. Biotechnol. 84 (2009) 597–606. [45] X. Huang, M. Chen, X. Lu, Y. Li, X. Li, J.J. Li, Direct production of itaconic acid from liquefied corn starch by genetically engineered Aspergillus terreus, Microb. Cell Fact. 13 (2014) 108. [46] X. Huang, X. Lu, Y. Li, X. Li, J.J. Li, Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain, Microb. Cell Fact. 13 (2014) 119. [47] Z. Dai, S.E. Baker, Ehanced itaconic acid production in Aspergillus with increased LaeA expression, US Patent, p0046967, 2016. [48] W.M.J. Van Der, M.P.M. Caspers, N. Van Luijk, P.J. Punt, Production of itaconic acid, US Patent (2013) 8440436. [49] J. Blazeck, A. Hill, M. Jamoussi, A. Pan, J. Miller, H.S. Alper, Metabolic engineering of Yarrowia lipolytica for itaconic acid production, Metab. Eng. 32 (2015) 66–73. [50] J. Blazeck, J. Miller, A. Pan, J. Gengler, C. Holden, M. Jamoussi, H. Alper, Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production, Appl. Microbiol. Biotechnol. 98 (2014) 8155–8164. [51] A. Otten, M. Brocker, M. Bott, Metabolic engineering of Corynebacterium glutamicum for the production of itaconate, Metab. Eng. 30 (2015) 156–165. [52] K.S. Vuoristo, A.E. Mars, J.V. Sangra, J. Springer, G. Eggink, J.P. Sanders, R.A. Weusthuis, Metabolic engineering of itaconate production in Escherichia coli, Appl. Microbiol. Biotechnol. 99 (2015) 221–228. [53] M. Papagianni, Fungal morphology and metabolite production in submerged mycelial processes, Biotechnol. Adv. 22 (3) (2004) 189–259. [54] A.B. Sitanggang, H.S. Wu, S.S. Wang, Y.C. Ho, Effect of pellet size and stimulating factor on the glucosamine production using Aspergillus sp. BCRC 31742, Bioresour. Technol. 101 (10) (2010) 3595–3601. [55] J.W. Anderson, R.J. Nicolosi, J.F. Borzelleca, Glucosamine effects in humans: a review of effects on glucose metabolism, side effects, safety considerations and efficacy, Food Chem. Toxicol. 43 (2) (2005) 187–201. [56] R. Muniyappa, Glucosamine and osteoarthritis: time to quit?, Diabetes/metab. Res. Rev. 27 (3) (2011) 233. [57] T. Hirano, M. Aoki, K. Kadokura, Y. Kumaki, W. Hakamata, T. Oku, T. Nishio, Heterodisaccharide 4-O-(N-acetyl-b-d-glucosaminyl)-d-glucosamine is an effective chemotactic attractant for Vibrio bacteria that produce chitin oligosaccharide deacetylase, Lett. Appl. Microbiol. 53 (2) (2011) 161–166. [58] M.D. Deng, S.L. Wassink, A.D. Grund, Engineering a new pathway for Nacetylglucosamine production: coupling a catabolic enzyme, glucosamine-6-phosphate deaminase, with a biosynthetic enzyme, glucosamine-6-phosphate N-acetyltransferase, Enzyme Microb. Technol. 39 (4) (2006) 828–834. [59] N.R. Dostrovsky, T.E. Towheed, R.W. Hudson, T.P. Anastassiades, The effect of glucosamine on glucose metabolism in humans: a systematic review of the literature, Osteoarthritis Cartilage 19 (4) (2011) 375–380. [60] M. Igarashi, K. Sakamoto, I. Nagaoka, Effect of glucosamine, a therapeutic agent for osteoarthritis, on osteoblastic cell differentiation, Int. J. Mol. Med. 28 (3) (2011) 373–379. [61] J. Zhang, L. Liu, J. Li, G. Du, J. Chen, Enhanced glucosamine production by Aspergillus sp. BCRC 31742 based on the time-variant kinetics analysis of dissolved oxygen level, Bioresour. Technol. 111 (2012) 507–511. [62] J.W. Hsieh, H.S. Wu, Y.H. Wei, S.S. Wang, Determination and kinetics of producing glucosamine using fungi, Biotechnol. Prog. 23 (5) (2007) 1009–1016. [63] A.B. Sitanggang, H.S. Wu, S.S. Wang, et al., Effect of pellet size and stimulating factor on the glucosamine production using Aspergillus sp. BCRC 31742, Bioresour. Technol. 101 (10) (2010) 3595–3601. [64] M.D. Deng, S.L. Wassink, A.D. Grund, Engineering a new pathway for -acetylglucosamine production: Coupling a catabolic enzyme, glucosamine-6-phosphate deaminase, with a biosynthetic enzyme, glucosamine-6-phosphate-acetyltransferase, Enzyme Microb. Technol. 39 (4) (2006) 828–834. [65] X. Chen, L. Liu, J. Li, et al., Improved glucosamine and N-acetylglucosamine production by an engineered Escherichia coli via step-wise regulation of dissolved oxygen level, Bioresour. Technol. 110 (1) (2012) 534–538. [66] Y. Liu, Y. Zhu, W. Ma, et al., Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis, Metab. Eng. 24 (1) (2014) 61–69. [67] M.D. Deng, D.K. Severson, et al., Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine, Metab. Eng. 7 (3) (2005) 201–214. [68] K. Zhou, R. Zou, C. Zhang, G. Stephanopoulos, H.P. Too, Optimization of amorphadiene synthesis in Bacillus subtilis via transcriptional, translational, and media modulation, Biotechnol. Bioeng. 110 (9) (2013) 2556–2561. [69] Y. Liu, Y. Zhu, et al., Spatial modulation of key pathway enzymes by DNAguided scaffold system and respiration chain engineering for improved Nacetylglucosamine production by Bacillus subtilis, Metab. Eng. 24 (2014) 61–69. [70] Y. Zhu, Y. Liu, et al., An optimal glucose feeding strategy integrated with stepwise regulation of the dissolved oxygen level improves N-acetylglucosamine production in recombinant Bacillus subtilis, Bioresour. Technol. 177 (2015) 387–392. [71] A.A. Chavaroche, L.A. van den Broek, G. Eggink, Production methods for heparosan, a precursor of heparin and heparan sulfate, Carbohydr. Polym. 93 (1) (2013) 38–47. [72] Z. Wang, M. Ly, et al., E. coli K5 fermentation and the preparation of heparosan, a bioengineered heparin precursor, Biotechnol. Bioeng. 107 (6) (2010) 964–973. [73] A.A. Chavaroche, L.A. van den Broek, C. Boeriu, G. Eggink, Synthesis of heparosan oligosaccharides by Pasteurella multocida PmHS2 single-action transferases, Appl. Microbiol. Biotechnol. 95 (5) (2012) 1199–1210. [74] A.A. Chavaroche, J. Springer, F. Kooy, C. Boeriu, G. Eggink, In vitro synthesis of heparosan using recombinant Pasteurella multocida heparosan synthase PmHS2, Appl. Microbiol. Biotechnol. 85 (6) (2010) 1881–1891. [75] Hélène Barreteau, E. Richard, S. Drouillard, et al., Production of intracellular heparosan and derived oligosaccharides by lyase expression in metabolically engineered E. coli K-12, Carbohydr. Res. 360 (2012) 19–24. [76] C. Zhang, L. Liu, L. Teng, et al., Metabolic engineering of Escherichia coli BL21 for biosynthesis of heparosan, a bioengineered heparin precursor, Metab. Eng. 14 (5) (2012) 521–527. [77] P. Jin, L. Zhang, P. Yuan, et al., Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis, Carbohydr. Polym. 140 (2016) 424–432. [78] X. Chen, R. Chen, X. Yu, et al., Metabolic engineering of Bacillus subtilis for biosynthesis of heparosan using heparosan synthase from Pasteurella multocida, PmHS1, Bioprocess Biosyst. Eng. 40 (5) (2017) 675–681. [79] P. Jin, L. Zhang, P. Yuan, Z. Kang, G. Du, J. Chen, Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis, Carbohydr. Polym. 140 (2016) 424–432. [80] M. Gottardi, M. Reifenrath, E. Boles, J. Tripp, Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose, FEMS Yeast Res. 17 (4) (2017) 1-11. [81] A. Berry, Improving production of aromatic compounds in Escherichia coli by metabolic engineering, Trends Biotechnol. 14 (7) (1996) 250–256. [82] J.W. Frost, J. Lievense, Prospects for biocatalytic synthesis of aromatics in the 21st century, ChemInform 25 (30) (1994), https://doi.org/10.1002/chin.199430307. [83] M. Tatarko, T. Romeo, Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli, Curr. Microbiol. 43 (1) (2001) 26–32. [84] R. McKenna, D.R. Nielsen, Styrene biosynthesis from glucose by engineered E. coli, Metab. Eng. 13 (5) (2011) 544–554. [85] G. Gosset, J. Yong-Xiao, A. Berry, A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli, J. Ind. Microbiol. 17 (1) (1996) 47–52. [86] Y.C. He, Y.D. Wu, X.H. Pan, C.L. Ma, Biosynthesis of terephthalic acid, isophthalic acid and their derivatives from the corresponding dinitriles by tetrachloroterephthalonitrile-induced Rhodococcus sp, Biotechnol. Lett. 36 (2) (2014) 341–347. [87] E.H. Hansen, B.L. Møller, et al., De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae), Appl. Environ. Microbiol. 75 (9) (2009) 2765–2774. [88] L. Miskovic, V. Hatzimanikatis, Production of biofuels and biochemicals: in need of an ORACLE, Trends Biotechnol. 228 (2010) 391–397. [89] R.R. Bommareddy, Z. Chen, S. Rappert, A.P. Zeng, A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase, Metab. Eng. 25 (2014) 30–37. [90] M.M. Wang, L.H. Fan, T.W. Tan, 1-Butanol production from glycerol by engineered Klebsiella pneumoniae, RSC Adv. 4 (2014) 57791–57798. [91] Y.W. Chen, D.B. Xu, L.H. Fan, X. Zhang, T.W. Tan, Manipulating multi-system of NADPH regulation in Escherichia coli for enhanced S-adenosylmethionine production, RSC Adv. 5 (2015) 41103–41111. [92] G.N. Vemuri, M.A. Eiteman, E. Altman, Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli, Appl. Environ. Microbiol. 68 (2002) 1715–1727. [93] P.M. Tribelli, P.I. Nikel, O.J. Oppezzo, N.I. Lopez, Anr, the anaerobic global regulator, modulates the redox state and oxidative stress resistance in Pseudomonas extremaustralis, Microbiology 159 (2013) 259–268. [94] H. Zhao, D.W.A. Van Der, Regeneration of cofactors for use in biocatalysis, Curr. Opin. Biotechnol. 14 (2003) 583–589. [95] S. Bastian, X. Liu, J.T. Meyerowitz, C.D. Snow, M.M.Y. Chen, F.H. Arnold, Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli, Metab. Eng. 13 (2011) 345–352. [96] J. Jan, I. Martinez, Y. Wang, G.N. Bennett, K.Y. San, Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli, Biotechnol. Prog. 29 (2013) 1124–1130. [97] A. Shi, X. Zhu, J. Lu, X. Zhang, Y. Ma, Activating transhydrogenase and NAD kinase in combination for improving isobutanol production, Metab. Eng. 16 (2013) 1–10. [98] Y. Qin, Z. Dong, L. Liu, J. Chen, Manipulation of NADH metabolism in industrial strains, Chin. J. Biotechnol. 25 (2009) 161–169. [99] H. Li, P.H. Opgenorth, D.G. Wernick, S. Rogers, T.Y. Wu, W. Higashide, et al., Integrated electromicrobial conversion of CO2 to higher alcohols, Science 335 (2012) 1596. [100] C. Li, F. Tao, J. Ni, Y. Wang, F. Yao, P. Xu, Enhancing the light-driven production of D-lactate by engineering cyanobacterium using a combinational strategy, Sci. Rep. 5 (2015) 1–11. [101] C. Liang, X. Zhang, J. Wu, S. Mu, Z. Wu, J.M. Jin, S.Y. Tang, Dynamic control of toxic natural product biosynthesis by an artificial regulatory circuit, Metab. Eng. 57 (2020) 239–246. [102] T.C. Williams, N.J.H. Averesch, G. Winter, M.R. Plan, C.E. Vickers, L.K. Nielsen, J.O. Krömer, Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae, Metab. Eng. 29 (2015) 124–134. [103] J.A. Jones, V.R. Vernacchio, et al., ePathOptimize: a combinatorial approach for transcriptional balancing of metabolic pathways, Sci. Rep. 5 (2015) 11301. [104] T. Li, J. Ye, R. Shen, Y. Zong, X. Zhao, C. Lou, G.Q. Chen, Semirational approach for ultrahigh poly (3-hydroxybutyrate) accumulation in Escherichia coli by combining one-step library construction and high-throughput screening, ACS Synth. Biol. 5 (11) (2016) 1308–1317. [105] B.F. Cress, E.A. Trantas, F. Ververidis, R.J. Linhardt, M.A. Koffas, Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways, Curr. Opin. Biotechnol. 36 (2015) 205–214. [106] E.M. Zhao, Y. Zhang, J. Mehl, H. Park, M.A. Lalwani, J.E. Toettcher, J. Avalos, Optogenetic regulation of engineered cellular metabolism for microbial chemical production, Nature 555 (7698) (2018) 683–687. [107] B.J. Harder, K. Bettenbrock, S. Klamt, Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli, Biotechnol. Bioeng. 115 (1) (2018) 156–164. [108] Y. Soma, K. Tsuruno, M. Wada, A. Yokota, T. Hanai, Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch, Metab. Eng. 23 (2014) 175–184. [109] J. Yuan, C.B. Ching, Dynamic control of ERG9 expression for improved amorpha-4, 11-diene production in Saccharomyces cerevisiae, Microb. Cell Fact. 14 (1) (2015) 38. [110] P. Xu, L. Li, F. Zhang, G. Stephanopoulos, M. Koffas, Improving fatty acids production by engineering dynamic pathway regulation and metabolic control, Proc. Natl. Acad. Sci. 111 (31) (2014) 11299–11304. [111] S.E. Maddocks, P.C. Oyston, Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins, Microbiology 154 (12) (2008) 3609–3623. [112] Y. Yang, Y. Lin, et al., Sensor-regulator and RNAi based bifunctional dynamic control network for engineered microbial synthesis, Nat. Commun. 9 (1) (2018) 1–10. [113] Q. Pang, H. Han, et al., In vivo evolutionary engineering of riboswitch with high-threshold for N-acetylneuraminic acid production, Metab. Eng. 59 (2020) 36–43. [114] D.N. McBrayer, C.D. Cameron, B.K. Gantman, Y. Tal-Gan, Rational design of potent activators and inhibitors of the Enterococcus faecalis fsr quorum sensing circuit, ACS Chem. Biol. 13 (9) (2018) 2673–2681. [115] A. Gupta, I.M.B. Reizman, C.R. Reisch, K.L. Prather, Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorumsensing circuit, Nat. Biotechnol. 35 (3) (2017) 273. [116] H. Lu, J.C. Villada, P.K. Lee, Modular metabolic engineering for biobased chemical production, Trends Biotechnol. 37 (2) (2019) 152–166. [117] Y. Wang, T.H. Phon, B. Pfeifer, P.K. Ajikumar, W.H. Xiao, K.E. Tyo, E. Leonard, O. Mucha, G. Stephanopoulos, Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli., Science 330 (6000) (2010) 70–74. [118] K. Zhou, K. Qiao, S. Edgar, G. Stephanopoulos, Distributing a metabolic pathway among a microbial consortium enhances production of natural products, Nat. Biotechnol. 33 (4) (2015) 377–383. [119] M. Saini, M.H. Chen, C.J. Chiang, Y.P. Chao, Potential production platform of nbutanol in Escherichia coli, Metab. Eng. 27 (2015) 76–82. [120] Z. Wen, N.P. Minton, Y. Zhang, Q. Li, J. Liu, Y. Jiang, S. Yang, Enhanced solvent production by metabolic engineering of a twin-clostridial consortium, Metab. Eng. 39 (2017) 38–48. [121] E.J. O’Brien, J.M. Monk, B.O. Palsson, Using genome-scale models to predict biological capabilities, Cell 161 (5) (2015) 971–987. [122] C.T. Trinh, Y. Liu, D.J. Conner, Rational design of efficient modular cells, Metab. Eng. 32 (2015) 220–231. [123] B.J. Sánchez, C. Zhang, A. Nilsson, P.J. Lahtvee, E.J. Kerkhoven, J. Nielsen, Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints, Mol. Syst. Biol. 13 (8) (2017) 935. [124] M. Suástegui, C.Y. Ng, A. Chowdhury, W. Sun, M. Cao, E. House, D. Maranas, Z. Shao, Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors, Metab. Eng. 42 (2017) 134–144. [125] M.M. Demeke, H. Dietz, Y. Li, M.R. Foulquie-Moreno, S. Mutturi, S. Deprez, T. Den Abt, B.M. Bonini, G. Liden, F. Dumortier, A. Verplaetse, E. Boles, J.M. Thevelein, Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering, Biotechnol. Biofuels 6 (2013) 89. [126] Z.H. Bao, X. Han, L. Jing, Z. Lu, X. Xiong, S. Ning, S. Tong, H. Zhao, Homologyintegrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae, ACS Synth. Biol. 4 (2014) 585–594. [127] V. Stovicek, C. Holkenbrink, I. Borodina, CRISPR/Cas system for yeast genome engineering: advances and applications, FEMS Yeast Res. 17 (2017) 30. [128] C. Arne, D. Quinten, R.F. María, M.T. Johan, Simultaneous secretion of seven lignocellulolytic enzymes by an industrial second-generation yeast strain enables efficient ethanol production from multiple polymeric substrates, Metab. Eng. 59 (2020) 131–141. [129] H. Park, D. Jeong, M. Shin, S. Kwak, E.J. Oh, J.K. Ko, S.R. Kim, Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol, Appl. Microbiol. Biotechnol. 104 (2020) 3245–3252. [130] Y.P. Zhang, J. Wang, Z.B. Wang, Y.M. Zhang, S.B. Shi, J. Nielsen, Z.H. Liu, A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae, Nat. Commun. 10 (2019) 1053. [131] J.Z. Lian, M.S.M. HamediRad, H.M. HuZhao, Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system, Nature Communications 8 (2020) 1688. [132] W.J. Holtz, J.D. Keasling, Engineering static and dynamic control of synthetic pathways, Cell 140 (2020) 19–23. [133] Y.K. Wu, T.C. Chen, Y.F. Liu, R.Z. Tian, X.Q. Lv, J.H. Li, G.C. Du, J. Chen, R. Ledesma-Amaro, L. Liu, Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis, Nucl. Acids Res. 4 (2020) 996–1009. [134] Z. Liu, K. Wang, Y. Chen, T. Tan, J. Nielsen, Third-generation biorefineries as the means to produce fuels and chemicals from CO2, Nat. Catal. 3 (3) (2020) 274–288. [135] G. Naseri, M.A. Koffas, Application of combinatorial optimization strategies in synthetic biology, Nat. Commun. 11 (1) (2020) 1–14. |
[1] | Xueying Zhu, Zhaoyang Zhang, Bin Jia, Yingjin Yuan. Current advances of biocontainment strategy in synthetic biology[J]. 中国化学工程学报, 2023, 56(4): 141-151. |
[2] | Meiru Jiang, Cong Chen, Tao Chen, Chao Zhao, Zhiwen Wang. An international comprehensive benchmarking analysis of synthetic biology in China from 2015 to 2020[J]. 中国化学工程学报, 2022, 48(8): 211-226. |
[3] | Wenjuan Yan, Zhenchao You, Kexin Meng, Feng Du, Shuxia Zhang, Xin Jin. Cross-metathesis of biomass to olefins: Molecular catalysis bridging the gap between fossil and bio-energy[J]. 中国化学工程学报, 2022, 48(8): 44-60. |
[4] | Xiaobin Liu, Zhenguo Gao, Jingcai Cheng, Junbo Gong, Jingkang Wang. Research progress on preparation and purification of fluorine-containing chemicals in lithium-ion batteries[J]. 中国化学工程学报, 2022, 41(1): 73-84. |
[5] | Ziheng Cui, Shiding Zhang, Shengyu Zhang, Biqiang Chen, Yushan Zhu, Tianwei Tan. Green biomanufacturing promoted by automatic retrobiosynthesis planning and computational enzyme design[J]. 中国化学工程学报, 2022, 41(1): 6-21. |
[6] | Kechang Xie. Reviews of clean coal conversion technology in China: Situations & challenges[J]. 中国化学工程学报, 2021, 35(7): 62-69. |
[7] | Jianying Dai, Yaqin Sun, Zhilong Xiu. Ionic liquid-based salting-out extraction of bio-chemicals[J]. 中国化学工程学报, 2021, 29(2): 185-193. |
[8] | Wenqiang Li, Wentao Sun, Chun Li. Engineered microorganisms and enzymes for efficiently synthesizing plant natural products[J]. 中国化学工程学报, 2021, 29(2): 62-73. |
[9] | Yanfeng Liu, Xiaomin Dong, Bin Wang, Rongzhen Tian, Jianghua Li, Long Liu, Guocheng Du, Jian Chen. Food synthetic biology-driven protein supply transition: From animal-derived production to microbial fermentation[J]. 中国化学工程学报, 2021, 29(2): 29-36. |
[10] | Nan Jiang, Lianju Ma, Yuan Lu. Cell-free synthetic biology in the new era of enzyme engineering[J]. 中国化学工程学报, 2020, 28(11): 2810-2816. |
[11] | Xinlei Wei, Pingping Han, Chun You. Facilitation of cascade biocatalysis by artificial multi-enzyme complexes—A review[J]. 中国化学工程学报, 2020, 28(11): 2799-2809. |
[12] | Jiachen Li, Liguo Wang, Yan Cao, Chanjuan Zhang, Peng He, Huiquan Li. Recent advances on the reduction of CO2 to important C2+ oxygenated chemicals and fuels[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2266-2279. |
[13] | 邵双喜, 史楷岐, 李亚, 蒋岚, 马淳安. Mechanism of Chrome-free Tanning with Tetra-hydroxymethyl Phosphonium Chloride[J]. , 2008, 16(3): 446-450. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||