[1] S.H. Hazeena, R. Sindhu, A. Pandey, P. Binod, Lignocellulosic bio-refinery approach for microbial 2,3-butanediol production, Bioresour. Technol. 302 (2020) 122873. [2] S.B. Li, L. Huang, C.Z. Ke, Z.W. Pang, L.M. Liu, Pathway dissection, regulation, engineering and application: lessons learned from biobutanol production by solventogenic clostridia, Biotechnol. Biofuels 13 (1) (2020) 39. [3] Y.Q. Sun, J.T. Shen, L. Yan, J.J. Zhou, L.L. Jiang, Y. Chen, J.L. Yuan, E.M. Feng, Z.L. Xiu, Advances in bioconversion of glycerol to 1,3-propanediol: prospects and challenges, Process Biochem. 71 (2018) 134–146. [4] Z.X. Dai, F. Guo, S.J. Zhang, W.M. Zhang, Q. Yang, W.L. Dong, M. Jiang, J.F. Ma, F. X. Xin, Bio-based succinic acid: an overview of strain development, substrate utilization, and downstream purification, Biofuel. Bioprod. Bioref. 14 (5) (2020) 965–985. [5] T.W. Yang, Z.M. Rao, X. Zhang, M.J. Xu, Z.H. Xu, S.T. Yang, Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects, Crit. Rev. Biotechnol. 37 (8) (2017) 990–1005. [6] H. Kawaguchi, T. Hasunuma, C. Ogino, A. Kondo, Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks, Curr. Opin. Biotech. 42 (2016) 30–39. [7] H.Z. Luo, R.L. Yang, Y.P. Zhao, Z.Y. Wang, Z. Liu, M.Y. Huang, Q.W. Zeng, Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation, Bioresour. Technol. 253 (2018) 343–354. [8] Y.Z. Wang, Q. Liao, F.L. Lv, X. Zhu, Y. Ran, C.J. Hou, Solid simultaneous saccharification and fermentation of rice straw for bioethanol production using nitrogen gas stripping, Rsc Adv. 5 (68) (2015) 55328–55335. [9] D. Cai, Z. Chang, L.L. Gao, C.J. Chen, Y.P. Niu, P.Y. Qin, Z. Wang, T.W. Tan, Acetone-butanol-ethanol (ABE) fermentation integrated with simplified gas stripping using sweet sorghum bagasse as immobilized carrier, Chem. Eng. J. 277 (2015) 176–185. [10] J. Sun, N.V.S.N.M. Konda, R. Parthasarathi, T. Dutta, M. Valiev, F. Xu, B.A. Simmons, S. Singh, One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids, Green Chem. 19 (13) (2017) 3152–3163. [11] Z.L. Yang, Z.S. Zhang, Recent advances on production of 2, 3-butanediol using engineered microbes, Biotechnol. Adv. 37 (4) (2019) 569–578. [12] J.J. Zhou, J.T. Shen, X.L. Wang, Y.Q. Sun, Z.L. Xiu, Stability and oscillatory behavior of microbial consortium in continuous conversion of crude glycerol to 1,3-propanediol, Appl. Microbiol. Biotechnol. 102 (19) (2018) 8291–8305. [13] Y.Q. Sun, Z.Z. Xu, Y.F. Zheng, J.J. Zhou, Z.L. Xiu, Efficient production of lactic acid from sugarcane molasses by a newly microbial consortium CEE-DL15, Process Biochem. 81 (2019) 132–138. [14] Y.Q. Sun, Y.F. Zheng, X.L. Wang, J.J. Zhou, Z.L. Xiu, Fermentation performance and mechanism of a novel microbial consortium DUT08 for 1,3-propandiol production from biodiesel-derived crude glycerol under non-strictly anaerobic conditions, Process Biochem. 83 (2019) 27–34. [15] X.L. Wang, J.J. Zhou, Y.Q. Sun, Z.L. Xiu, Bioconversion of raw glycerol from waste cooking-oil-based biodiesel production to 1,3-propanediol and lactate by a microbial consortium, Front. Bioeng. Biotechnol. 7 (2019) 14. [16] Y.Q. Sun, X.X. Zhang, Y.F. Zheng, L. Yan, Z.L. Xiu, Sugaring-out extraction combining crystallization for recovery of succinic acid, Sep. Purif. Tech. 209 (2019) 972–983. [17] J.Y. Dai, L.H. Ma, Z.F. Wang, W.T. Guan, Z.L. Xiu, Sugaring-out extraction of acetoin from fermentation broth by coupling with fermentation, Bioprocess Biosyst. Eng. 40 (3) (2017) 423–429. [18] L. Yan, Y.Q. Sun, Z.L. Xiu, Sugaring-out extraction coupled with fermentation of lactic acid, Sep. Purif. Technol. 161 (2016) 152–158. [19] J.Y. Dai, C.J. Liu, Z.L. Xiu, Sugaring-out extraction of 2,3-butanediol from fermentation broths, Process Biochem. 50 (11) (2015) 1951–1957. [20] C. Fu, Z. Li, Z. Sun, S. Xie, A review of salting-out effect and sugaring-out effect: driving forces for novel liquid-liquid extraction of biofuels and biochemicals, Front. Chem. Sci. Eng. (2020), https://doi.org/10.1007/s11705-020-1980-3. [21] Z.L. Xiu, A.P. Zeng, Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol, Appl. Microbiol. Biotechnol. 78 (6) (2008) 917–926. [22] L. Yan, H.X. Fu, X.D. Wang, Y.Q. Sun, J.Y. Dai, Z.L. Xiu, Recent advances on recovery and separation of biomass-based organic acids, Chin. J. Process Eng. 18 (1) (2018) 1–10 (in Chinese). [23] J.Y. Dai, Y.Q. Sun, Z.L. Xiu, Separation of bio-based chemicals from fermentation broths by salting-out extraction, Eng. Life Sci. 14 (2) (2014) 108–117. [24] B. Jiang, Z.G. Li, J.Y. Dai, D.J. Zhang, Z.L. Xiu, Aqueous two-phase extraction of 2,3-butanediol from fermentation broths using an ethanol/phosphate system, Process Biochem. 44 (1) (2009) 112–117. [25] Z.G. Li, B. Jiang, D.J. Zhang, Z.L. Xiu, Aqueous two-phase extraction of 1,3-propanediol from glycerol-based fermentation broths, Sep. Purif. Technol. 66 (3) (2009) 472–478. [26] L.H. Sun, B. Jiang, Z.L. Xiu, Aqueous two-phase extraction of 2,3-butanediol from fermentation broths by isopropanol/ammonium sulfate system, Biotechnol. Lett. 31 (3) (2009) 371–376. [27] Y.J. Li, Y.Y. Wu, J.W. Zhu, J.X. Liu, Separation of 2,3-butanediol from fermentation broth by reactive-extraction using acetaldehyde-cyclohexane system, Biotechnol. Bioproc. E 17 (2) (2012) 337–345. [28] J.J. Malinowski, Reactive extraction for downstream separation of 1,3-propanediol, Biotechnol. Progr. 16 (1) (2000) 76–79. [29] J. Hao, H.J. Liu, D.H. Liu, Novel route of reactive extraction to recover 1,3-propanediol from a dilute aqueous solution, Ind. Eng. Chem. Res. 44 (12) (2005) 4380–4385. [30] A. Muller, A. Gorak, Extraction of 1,3-propanediol from aqueous solutions using different ionic liquid-based aqueous two-phase systems, Sep. Purif. Technol. 97 (2012) 130–136. [31] S.Y. Lee, I. Khoiroh, C.W. Ooi, T.C. Ling, P.L. Show, Recent advances in protein extraction using ionic liquid-based aqueous two-phase systems, Sep. Purif. Rev. 46 (4) (2017) 291–304. [32] H. Passos, M.G. Freire, J.A.P. Coutinho, Ionic liquid solutions as extractive solvents for value-added compounds from biomass, Green Chem. 16 (2014) 4786–4815. [33] G. Cevasco, C. Chiappe, Are ionic liquids a proper solution to current environmental challenges? Green Chem. 16 (2014) 2375–2385. [34] Z.Y. Li, Y.C. Pei, H.Y. Wang, J. Fan, J.J. Wang, Ionic liquid-based aqueous twophase systems and their applications in green separation processes, TracTrend. Anal. Chem. 29 (11) (2010) 1336–1346. [35] E.L. Smith, A.P. Abbott, K.S. Ryder, Deep eutectic solvents (DESs) and their applications, Chem. Rev. 114 (21) (2014) 11060–11082. [36] S.P.M. Ventura, F.A.E. Silva, M.V. Quental, D. Mondal, M.G. Freire, J.A.P. Coutinho, Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends, Chem. Rev. 117 (10) (2017) 6984–7052. [37] T. Wang, W.J. Xu, S.X. Wang, P. Kou, P. Wang, X.Q. Wang, Y.J. Fu, Integrated and sustainable separation of chlorogenic acid from blueberry leaves by deep eutectic solvents coupled with aqueous two-phase system, Food Bioprod. Process. 105 (2017) 205–214. [38] R. Millati, R. Wikandari, T. Ariyanto, R.U. Putri, M.J. Taherzadeh, Pretreatment technologies for anaerobic digestion of lignocelluloses and toxic feedstocks, Bioresour. Technol. 304 (2020) 122998. [39] W.Y. Lee, K.S. Kim, J.K. You, Y.K. Hong, Effect of cations in ionic liquids on the extraction characteristics of 1,3-propanediol by ionic liquid -based aqueous biphasic systems, ACS Sustainable Chem. Eng. 4 (2) (2016) 572–576. [40] A.I. Pratiwi, T. Yokouchi, M. Matsumoto, K. Kondo, Extraction of succinic acid by aqueous two-phase system using alcohols/salts and ionic liquids/salts, Sep. Purif. Technol. 155 (2015) 127–132. [41] Y.Q. Sun, S.S. Zhang, X.X. Zhang, Y.F. Zheng, Z.L. Xiu, Ionic liquid-based sugaring-out and salting-out extraction of succinic acid, Sep. Purif. Technol. 204 (2018) 133–140. [42] Y. Li, J.Y. Dai, Z.L. Xiu, Salting-out extraction of acetoin from fermentation broths using hydroxylammonium ionic liquids as extractants, Sep. Purif. Technol. 240 (2020) 116584. [43] J.Y. Dai, H. Wang, Y. Li, Z.L. Xiu, Imidazolium ionic liquids-based salting-out extraction of 2,3-butanediol from fermentation broths, Process Biochem. 71 (2018) 175–181. [44] X.H. Liu, M. Rebros, I. Dolejs, A.C. Marr, Designing ionic liquids for the extraction of alcohols from fermentation broth: phosphonium alkanesulfonates, solvents for diol extraction, ACS Sustainable Chem. Eng. 5 (9) (2017) 8260–8268. [45] H. Yu, K. Cui, T.H. Li, Z.D. Zhang, Z.Y. Zhou, Z.Q. Ren, Recovery of butanol from ABE fermentation broth with hydrophobic functionalized ionic liquids as extractants, ACS Sustainable Chem. Eng. 7 (10) (2019) 9318–9329. [46] Y.T. Tan, A.S.M. Chua, G.C. Ngoh, Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products –a review, Bioresour. Technol. 297 (2020) 122522. [47] H. Xu, J.P. Peng, Y. Kong, Y. Liu, Z.N. Su, B. Li, X.M. Song, S.W. Liu, W.D. Tian, Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: a review, Bioresour. Technol. 310 (2020) 123416. [48] M.G. Freire, A.F.M. Claudio, J.M.M. Araujo, J.A.P. Coutinho, I.M. Marrucho, J.N.C. Lopes, L.P.N. Rebelo, Aqueous biphasic systems: a boost brought about by using ionic liquids, Chem. Soc. Rev. 41 (14) (2012) 4966–4995. [49] P.G. Jessop, D.A. Jessop, D.B. Fu, L. Phan, Solvatochromic parameters for solvents of interest in green chemistry, Green Chem. 14 (5) (2012) 1245–1259. [50] A.F.M. Claudio, A.M. Ferreira, S. Shahriari, M.G. Freire, J.A.P. Coutinho, Critical assessment of the formation of ionic-liquid-based aqueous two-phase systems in acidic media, J. Phys. Chem. B 115 (38) (2011) 11145–11153. [51] C.Y. He, S.H. Li, H.W. Liu, K. Li, F. Liu, Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt, J. Chromatogr. A 1082 (2) (2005) 143–149. [52] M.T. Zafarani-Moattar, S. Hamzehzadeh, Effect of pH on the phase separation in the ternary aqueous system containing the hydrophilic ionic liquid 1-butyl-3-methylimidazolium bromide and the kosmotropic salt potassium citrate at T = 298.15K, Fluid Phase Equilibr. 304 (2011) 110–120. [53] A. Muller, R. Schulz, J. Wittmann, I. Kaplanow, A. Gorak, Investigation of a phosphate/1-butyl-3-methylimidazolium trifluoromethanesulfonate/water system for the extraction of 1,3-propanediol from fermentation broth, RSC Adv. 3 (2013) 148–156. [54] W.Y. Lee, Y.K. Hong, Liquid extraction of succinic acid by aqueous two-phase systems composed of piperidinium ionic liquids and phosphate salt, Korean Chem. Eng. Res. 54 (1) (2016) 52–56. [55] K. Tonova, I. Svinyarov, M.G. Bogdanov, Hydrophobic 3-alkyl-1-methylimidazolium saccharinates as extractants for L-lactic acid recovery, Sep. Purif. Technol. 125 (2014) 239–246. [56] E. Reyhanitash, T. Brouwer, S.R.A. Kersten, A.G.J. van der Ham, B. Schuur, Liquid-liquid extraction-based process concepts for recovery of carboxylic acids from aqueous streams evaluated for dilute streams, Chem. Eng. Res. Des. 137 (2018) 510–533. [57] J. Martak, S. Schlosser, Phosphonium ionic liquids as new, reactive extractants of lactic acid, Chem. Pap. 60 (5) (2006) 395–398. [58] F.S. Oliveira, J.M.M. Araujo, R. Ferreira, L.P.N. Rebelo, I.M. Marrucho, Extraction of L-lactic, L-malic, and succinic acids using phosphonium-based ionic liquids, Sep. Purif. Technol. 85 (2012) 137–146. [59] Y.G. Bai, R.Y. Yan, W.H. Tu, J.G. Qian, H.S. Gao, X.P. Zhang, S.J. Zhang, Selective separation of methacrylic acid and acetic acid from aqueous solution using carboxyl-functionalized ionic liquids, ACS Sustainable Chem. Eng. 6 (1) (2018) 1215–1224. [60] E. Reyhanitash, E. Fufachev, K.D. van Munster, M.B.M. van Beek, L.M.J. Sprakel, C.N. Edelijn, B.M. Weckhuysen, S.R.A. Kersten, P.C.A. Bruijnincx, B. Schuur, Recovery and conversion of acetic acid from a phosphonium phosphinate ionic liquid to enable valorization of fermented wastewater, Green Chem. 21 (8) (2019) 2023–2034. [61] J.A. Sun, B. Rao, L.Y. Zhang, Y.L. Shen, D.Z. Wei, Extraction of acetoin from fermentation broth using an acetone/phosphate aqueous two-phase system, Chem. Eng. Commun. 199 (11) (2012) 1492–1503. [62] Z.G. Li, H. Teng, Z.L. Xiu, Extraction of 1,3-propanediol from glycerol-based fermentation broths with methanol/phosphate aqueous two-phase system, Process Biochem. 46 (2) (2011) 586–591. [63] Z.G. Li, H. Teng, Z.L. Xiu, Aqueous two-phase extraction of 2,3-butanediol from fermentation broths using an ethanol/ammonium sulfate system, Process Biochem. 45 (5) (2010) 731–737. [64] J.Y. Dai, W.T. Guan, L.H. Ma, Z.L. Xiu, Salting-out extraction of acetoin from fermentation broth using ethyl acetate and K2HPO4, Sep. Purif. Technol. 184 (2017) 275–279. [65] Z.G. Li, Y.Q. Sun, W.L. Zheng, H. Teng, Z.L. Xiu, A novel and environmentfriendly bioprocess of 1,3-propanediol fermentation integrated with aqueous two-phase extraction by ethanol/sodium carbonate system, Biochem. Eng. J. 80 (2013) 68–75. [66] M. Zawadzki, F.A.E. Silva, U. Domanska, J.A.P. Coutinho, S.P.M. Ventura, Recovery of an antidepressant from pharmaceutical wastes using ionic liquid-based aqueous biphasic systems, Green Chem. 18 (12) (2016) 3527–3536. [67] C.J. Zhu, T. Shen, D. Liu, J.L. Wu, Y. Chen, L.F. Wang, K. Guo, H.J. Ying, P.K. Ouyang, Production of liquid hydrocarbon fuels with acetoin and platform molecules derived from lignocellulose, Green Chem. 18 (7) (2016) 2165–2174. [68] Z. Usmani, M. Sharma, P. Gupta, Y. Karpichev, N. Gathergood, R. Bhat, V.K. Gupta, Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion, Bioresour. Technol. 304 (2020) 123003. [69] Y.J. Cao, R.B. Zhang, T. Cheng, J. Guo, M. Xian, H.Z. Liu, Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives, Appl. Microbiol. Biotechnol. 101 (2) (2017) 521–532. [70] J. Shi, J.M. Gladden, N. Sathitsuksanoh, P. Kambam, L. Sandoval, D. Mitra, S. Zhang, A. George, S.W. Singer, B.A. Simmons, S. Singh, One-pot ionic liquid pretreatment and saccharification of switchgrass, Green Chem. 15 (2013) 2579–2589. [71] C. Yu, B.A. Simmons, S.W. Singer, M.P. Thelen, J.S. VanderGheynst, Ionic liquidtolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts, Appl. Microbiol. Biotechnol. 100 (2016) 10237–10249. [72] J. Grewal, S.K. Khare, One-pot bioprocess for lactic acid production from lignocellulosic agrowastes by using ionic liquid stable Lactobacillus brevis, Bioresour. Technol. 251 (2018) 268–273. [73] M.J. Liszka, A. Kang, N.V.S.N.M. Konda, K. Tran, J.M. Gladden, S. Singh, J.D. Keasling, C.D. Scown, T.S. Lee, B.A. Simmons, K.L. Sale, Switchable ionic liquids based on di-carboxylic acids for one-pot conversion of biomass to an advanced biofuel, Green Chem. 18 (14) (2016) 4012–4021. [74] A. Satlewal, R. Agrawal, S. Bhagia, J. Sangoro, A.J. Ragauskas, Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities, Biotechnol. Adv. 36 (8) (2018) 2032–2050. [75] X.J. Shen, J.L. Wen, Q.Q. Mei, X. Chen, D. Sun, T.Q. Yuan, R.C. Sun, Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization, Green Chem. 21 (2) (2019) 275–283. [76] Y.T. Tan, G.C. Ngoh, A.S.M. Chua, Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin, Bioresour. Technol. 281 (2019) 359–366. [77] M. Hayyan, M.A. Hashim, A. Hayyan, M.A. Al-Saadi, I.M. AlNashef, M.E.S. Mirghani, O.K. Saheed, Are deep eutectic solvents benign or toxic? Chemosphere 90 (7) (2013) 2193–2195. [78] A.A.N. Gunny, D. Arbain, E.M. Nashef, P. Jamal, Applicability evaluation of Deep Eutectic Solvents-Cellulase system for lignocellulose hydrolysis, Bioresour. Technol. 181 (2015) 297–302. |