[1] R. Rezaei, Z. Wu, Y. Hou, F.W. Bazer, G. Wu, Amino acids and mammary gland development: Nutritional implications for milk production and neonatal growth, J. Anim. Sci. Biotechnol. 7 (2016) 20. [2] I. Elmadfa, A.L. Meyer, Animal proteins as important contributors to a healthy human diet, Annu. Rev. Anim. Biosci. 5 (2017) 111–131. [3] G. Wu, B. Imhoff-Kunsch, A.W. Girard, Biological mechanisms for nutritional regulation of maternal health and fetal development, Paediatr. Perinat. EPidemiol. 26 (Supplement 1) (2012) 4–26. [4] J. Bauer, G. Biolo, T. Cederholm, M. Cesari, A.J. Cruz-Jentoft, J.E. Morley, S. Phillips, C. Sieber, P. Stehle, D. Teta, R. Visvanathan, E. Volpi, Y. Boirie, Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group, Am. Med. Direct. Associa 14 (2013) 542–559. [5] M.J. Boland, A.N. Rae, J.M. Vereijken, M.P.M. Meuwissen, A.R.H. Fischer, M.A.J. S. van Boekel, S.M. Rutherfurd, H. Gruppen, P.J. Moughan, W.H. Hendriks, The future supply of animal-derived protein for human consumption, Trends Food Sci. Technol. 29 (2013) 62–73. [6] E.S. Cassidy, P.C. West, J.S. Gerber, J.A. Foley, Redefining agricultural yields: from tonnes to people nourished per hectare, Environ. Res. Lett. 8 (2013) 034015. [7] M.M. Mekonnen, A.Y. Hoekstra, A global assessment of the water footprint of farm animal products, Ecosystems 15 (2020) 401–415. [8] L. Lei, S. Shimokawa, Promoting dietary guidelines and environmental sustainability in China, China Economic Review 59 (2020) 101087. [9] A. Shepon, G. Eshel, E. Noor, R. Milo, The opportunity cost of animal based diets exceeds all food losses, Proc. Natl. Acad. Sci. USA 115 (2018) 3804–3809. [10] H. Aiking, Future protein supply, Trends Food Sci. Technol. 22 (2011) 112–120. [11] K.E. French, Harnessing synthetic biology for sustainable development, Nat. Sustain. 2 (2019) 250–252. [12] D.E. Cameron, C.J. Bashor, J.J. Collins, A brief history of synthetic biology, Nat. Rev. Microbiol. 12 (2014) 381–390. [13] Y.F. Flores Bueso, M. Tangney, Synthetic biology in the driving seat of the bioeconomy, Trends Biotechnol. 35 (2017) 373–378. [14] T. Decoene, B. de Paepe, J. Maertens, P. Coussement, G. Peters, S.L. de Maeseneire, M. de Mey, Standardization in synthetic biology: An engineering discipline coming of age, Rev. Biotechnol. Crit. Rev. Biotechnol. 38 (2018) 647–656. [15] E.T. Wurtzel, C.E. Vickers, A.D. Hanson, A.H. Millar, M. Cooper, K.P. Voss-Fels, P.I. Nikel, T.J. Erb, Revolutionizing agriculture with synthetic biology, Nat. Plants 5 (2019) 1207–1210. [16] A. Tyagi, A. Kumar, S.V. Aparna, R.H. Mallappa, S. Grover, V.K. Batish, Synthetic biology: Applications in the food sector, Crit. Rev. Food Sci. Nutr. 56 (2016) 1777–1789. [17] S. Chriki, J.F. Hocquette, The myth of cultured meat: A review, Front. Nutr. 7 (2020) 7. [18] Dietary protein quality evaluation in human nutrition. Report of an FAQ Expert Consultation, FAO Food Nutr. Pap. 92 (2013) 1–66. [19] N. Shivakumar, S. Kashyap, S. Kishore, T. Thomas, A. Varkey, S. Devi, T. Preston, F. Jahoor, M.S. Sheshshayee, A.V. Kurpad, Protein-quality evaluation of complementary foods in Indian children, Am. J. Clin. Nutr. 109 (2019) 1319–1327. [20] M.K. Gaydhane, U. Mahanta, C.S. Sharma, M. Khandelwal, S. Ramakrishna, Cultured meat: State of the art and future, Biomanuf. Rev. 3 (2018) 1. [21] H.J. Lee, H.I. Yong, M. Kim, Y.S. Choi, C. Jo, Status of meat alternatives and their potential role in the future meat market -A review, Asian-Australas. J. Anim. Sci. 33 (2020) 1533–1543. [22] M. Siegrist, B. Sütterlin, C. Hartmann, Perceived naturalness and evoked disgust influence acceptance of cultured meat, Meat. Sci. 139 (2018) 213–219. [23] A. Dance, Engineering the animal out of animal products, Nature Publishing Group, 2017. [24] G. Caire-Juvera, F.A. Vázquez-Ortiz, M.I. Grijalva-Haro, Amino acid composition, score and in vitro protein digestibility of foods commonly consumed in northwest Mexico, Nutr. Hosp. 28 (2013) 365–371. [25] P.N. Seong, K.M. Park, S.H. Cho, S.M. Kang, G.H. Kang, B.Y. Park, S.S. Moon, H.V. van Ba, Characterization of edible pork By-Products by means of yield and nutritional composition, Korean J. Food Sci. Anim. Resour. 34 (2014) 297–306. [26] S.H.M. Gorissen, J.J.R. Crombag, J.M.G. Senden, W.A.H. Waterval, J. Bierau, L.B. Verdijk, L.J.C. van Loon, Protein content and amino acid composition of commercially available plant-based protein isolates, Amino Acids 50 (2018) 1685–1695. [27] T. Searchinger, R. Heimlich, R.A. Houghton, et al., Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change, Science 319 (5867) (2008) 1238–1240. [28] T. Garnett, Livestock-related greenhouse gas emissions: Impacts and options for policy makers, Environ. Sci. Policy 12 (2009) 491–503. [29] B. Gómez, P.E.S. Munekata, Z. Zhu, F.J. Barba, F. Toldrá, P. Putnik, D.B. Bursać Kovačević, J.M. Lorenzo, Challenges and opportunities regarding the use of alternative protein sources: Aquaculture and insects, Adv. Food Nutr. Res. 89 (2019) 259–295. [30] D. Vandamme, I. Foubert, B. Meesschaert, K. Muylaert, Flocculation of microalgae using cationic starch, J. Appl. Phycol. 22 (2010) 525–530. [31] M. Hayes, H. Skomedal, K. Skjånes, H. Mazur-Marzec, A. Toruńska-Sitarz, M. Catala, M. Isleten Hosoglu, M. García-Vaquero, in: Microalgal proteins for feed, food and health, in: Microalgae-based biofuels and bioproducts Woodhead publishing series in energy C, Woodhead Publishing, 2017, pp. 347–368. [32] L. Soto-Sierra, P. Stoykova, Z.L. Nikolov, Extraction and fractionation of microalgae-based protein products, Algal Research 36 (2018) 175–192. [33] S. Patel, H.A.R. Suleria, A. Rauf, Edible insects as innovative foods: Nutritional and functional assessments, Trends Food Sci. Technol. 86 (2019) 352–359. [34] A. van Huis, D.G.A.B. Oonincx, The environmental sustainability of insects as food and feed. A review, Agron. Sustain. Dev. 37 (2017) 43. [35] A. Pihlanto, P. Mattila, S. Mäkinen, A.M. Pajari, Bioactivities of alternative protein sources and their potential health benefits, Food Funct. 8 (2017) 3443–3458. [36] Y. Sui, S.E. Vlaeminck, Dunaliella microalgae for nutritional protein: An undervalued asset, Trends Biotechnol. 38 (2020) 10–12. [37] S. Bleakley, M. Hayes, Algal proteins: Extraction, application, and challenges concerning production, Foods 6 (2017) 33. [38] Y. Akhtar, M.B. Isman, Insects as an alternative protein source, in: Proteins in food processing, Elsevier, 2018, pp. 263–288. [39] A.G.A. Sá, Y.M.F. Moreno, B.A.M. Carciofi, Plant proteins as high-quality nutritional source for human diet, Trends Food Sci. Technol. 97 (2020) 170–184. [40] A. Ritala, S.T. Häkkinen, M. Toivari, M.G. Wiebe, Single cell protein-State-ofthe-art, industrial landscape and patents 2001–2016, Front. Microbiol. 8 (2017) 2009. [41] M. van der Spiegel, M.Y. Noordam, H.J. van der Fels-Klerx, Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production, Compr. Rev. Food Sci. F. 12 (2013) 662–678. [42] C. Bryant, K. Szejda, N. Parekh, V. Deshpande, B. Tse, A survey of consumer perceptions of plant-based and clean meat in the USA, India, and China, Front. Sustain. Food Syst. 3 (2019) 11. [43] A. Haug, A.T. Høstmark, O.M. Harstad, Bovine milk in human nutrition -A review, Lipids Health Dis. 6 (2007) 25. [44] A. Foroutan, A.C. Guo, R. Vazquez-Fresno, M. Lipfert, L. Zhang, J. Zheng, H. Badran, Z. Budinski, R. Mandal, B.N. Ametaj, D.S. Wishart, Chemical composition of commercial cow’s milk, J. Agric. Food Chem. 67 (2019) 4897–4914. [45] J.A. Lucey, D. Otter, D.S. Horne, A 100-year Review: Progress on the chemistry of milk and its components, J. Dairy Sci. 100 (2017) 9916–9932. [46] M. Albenzio, A. Santillo, M.G. Ciliberti, L. Figliola, M. Caroprese, R. Marino, A.N. Polito, Milk from different species: Relationship between protein fractions and inflammatory response in infants affected by generalized epilepsy, J. Dairy Sci. 99 (2016) 5032–5038. [47] W.L. Claeys, C. Verraes, S. Cardoen, J. de Block, A. Huyghebaert, K. Raes, K. Dewettinck, L. Herman, Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits, Food Control 42 (2014) 188–201. [48] T. Uniacke-Lowe, T. Huppertz, P.F. Fox, Equine milk proteins: Chemistry, structure and nutritional significance, Int. Dairy J. 20 (2010) 609–629. [49] S. Séverin, X. Wenshui, Milk biologically active components as nutraceuticals: Review: Review, Crit. Rev. Food Sci. Nutr. 45 (2005) 645–656. [50] T.T.P. Nguyen, B. Bhandari, J. Cichero, S. Prakash, A comprehensive review on in vitro digestion of infant formula, Food Res. Int. 76 (2015) 373–386. [51] J. Barłowska, M. Szwajkowska, Z. Litwińczuk, J. Król, Nutritional value and technological suitability of milk from various animal species used for dairy production, Compr. Rev. Food Sci. F. 10 (2011) 291–302. [52] B. Grenov, K.F. Michaelsen, Growth components of cow’s milk: Emphasis on effects in undernourished children, Food Nutr. Bull. 39 (2018) S45–S53. [53] E.I. Elagamy, Effect of heat treatment on camel milk proteins with respect to antimicrobial factors: A comparison with cows’ and buffalo milk proteins, Food Chem. 68 (2000) 227–232. [54] A.M. Caroli, S. Chessa, G.J. Erhardt, Invited review: Milk protein polymorphisms in cattle: Effect on animal breeding and human nutrition, J. Dairy Sci. 92 (2009) 5335–5352. [55] A. Szilagyi, N. Ishayek, Lactose intolerance, dairy avoidance, and treatment options, Nutrients 10 (2018) 1994. [56] S.S. Epstein, Potential public health hazards of biosynthetic milk hormones, Health Servi., Int. J. Health Serv. 20 (1990) 73–84. [57] W.J. Craig, Health effects of vegan diets, Am. J. Clin. Nutr. 89 (2009) 1627S–1633S. [58] W.J. Craig, Nutrition concerns and health effects of vegetarian diets, Nutr. Clin. Pract. 25 (2010) 613–620. [59] C.A. Rotz, F. Montes, D.S. Chianese, The carbon footprint of dairy production systems through partial life cycle assessment, J. Dairy Sci. 93 (2010) 1266–1282. [60] J.R. Knapp, G.L. Laur, P.A. Vadas, W.P. Weiss, J.M. Tricarico, Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions, J. Dairy Sci. 97 (2014) 3231–3261. [61] R. Ibarra, K.M. Rich, M. Adasme, A. Kamp, R.S. Singer, M. Atlagich, C. Estrada, R. Jacob, N. Zimin-Veselkoff, J. Escobar-Dodero, F.O. Mardones, Animal production, animal health and food safety: Gaps and challenges in the Chilean industry, Food Microbiol. 75 (2018) 114–118. [62] S. Sethi, S.K. Tyagi, R.K. Anurag, Plant-based milk alternatives an emerging segment of functional beverages: A review, J. Food Sci. Technol. 53 (2016) 3408–3423. [63] M. Tangyu, J. Muller, C.J. Bolten, C. Wittmann, Fermentation of plant-based milk alternatives for improved flavour and nutritional value, Appl. Microbiol. Biotechnol. 103 (2019) 9263–9275. [64] O.E. Mäkinen, V. Wanhalinna, E. Zannini, E.K. Arendt, Foods for special dietary needs: Non-dairy plant-based milk substitutes and fermented dairy-type products, Crit. Rev. Food Sci. Nutr. 56 (2016) 339–349. [65] A. Deswal, N.S. Deora, H.N. Mishra, Optimization of enzymatic production process of oat milk using response surface methodology, Food Bioprocess Technol. 7 (2014) 610–618. [66] K. Diarra, Z.G. Nong, C. Jie, Peanut milk and peanut milk based products production: A review, Crit. Rev. Food Sci. Nutr. 45 (2005) 405–423. [67] M. Namiki, Nutraceutical functions of sesame: A review, Crit. Rev. Food Sci. Nutr. 47 (2007) 651–673. [68] S.K. Vanga, V. Raghavan, How well do plant based alternatives fare nutritionally compared to cow’s milk, J. Food Sci. Technol. 55 (2018) 10–20. [69] Y.-H.-P. Zhang, J. Sun, Y. Ma, Biomanufacturing: History and perspective, J. Ind. Microbiol. Biotechnol. 44 (2017) 773–784. [70] M. Yadav, P. Shukla, Efficient engineered probiotics using synthetic biology approaches: A review, Biotechnol. Appl. Biochem. 67 (2020) 22–29. [71] L. Liu, J.L. Martínez, Z. Liu, D. Petranovic, J. Nielsen, Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae, Metab. Eng. 21 (2014) 9–16. [72] J.L. Martínez, L. Liu, D. Petranovic, J. Nielsen, Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae, Biotechnol. Bioeng. 112 (2015) 181–188. [73] Y.H. Choi, B.S. Park, J.H. Seo, B.G. Kim, Biosynthesis of the human milk oligosaccharide 3-fucosyllactose in metabolically engineered Escherichia coli via the salvage pathway through increasing GTP synthesis and bgalactosidase modification, Biotechnol. Bioeng. 116 (2019) 3324–3332. [74] S. Yu, J.J. Liu, E.J. Yun, S. Kwak, K.H. Kim, Y.S. Jin, Production of a human milk oligosaccharide 20-fucosyllactose by metabolically engineered Saccharomyces cerevisiae, Microb. Cell Factories 17 (2018) 101. [75] X. Dong, N. Li, Z. Liu, X. Lv, Y. Shen, J. Li, G. Du, M. Wang, L. Liu, CRISPRi-guided multiplexed fine-tuning of metabolic flux for enhanced lacto-N-neotetraose production in Bacillus subtilis, J. Agric. Food Chem. 68 (2020) 2477–2484. [76] J. Deng, L. Gu, T. Chen, H. Huang, X. Yin, X. Lv, Y. Liu, N. Li, Z. Liu, J. Li, G. Du, L. Liu, Engineering the substrate transport and cofactor regeneration systems for enhancing 20-fucosyllactose synthesis in Bacillus subtilis, ACS Synth. Biol. 8 (2019) 2418–2427. [77] D. Huang, K. Yang, J. Liu, Y. Xu, Y. Wang, R. Wang, B. Liu, L. Feng, Metabolic engineering of Escherichia coli for the production of 20-fucosyllactose and 3-fucosyllactose through modular pathway enhancement, Metab. Eng. 41 (2017) 23–38. [78] S. Drouillard, T. Mine, H. Kajiwara, T. Yamamoto, E. Samain, Efficient synthesis of 60-sialyllactose, 6,60-disialyllactose, and 60-KDO-lactose by metabolically engineered E. coli expressing a multifunctional sialyltransferase from the Photobacterium sp. JT-ISH-224, Carbohydr. Res. 345 (2010) 1394–1399. [79] S.H. Wang, T.S. Yang, S.M. Lin, M.S. Tsai, S.C. Wu, S.J. Mao, Expression, characterization, and purification of recombinant porcine lactoferrin in pichia pastoris, Protein Expr. Purif. 25 (2002) 41–49. [80] D. Latorre, P. Puddu, P. Valenti, S. Gessani, Reciprocal interactions between lactoferrin and bacterial endotoxins and their role in the regulation of the immune response, Toxins (Basel) 2 (2010) 54–68. [81] H.J. Vogel, Lactoferrin, a bird’s eye view, Biochem. Cell Biol. 90 (2012) 233–244. [82] H. Jenssen, R.E. Hancock, Antimicrobial properties of lactoferrin, Biochimie 91 (2009) 19–29. [83] W.S. Kim, K.-I. Shimazaki, T. Tamura, Expression of bovine lactoferrin C-lobe in Rhodococcus erythropolis and its purification and characterization, Biosci. Biotechnol. Biochem. 70 (2006) 2641–2645. [84] I. García-Montoya, S.A. González-Chávez, J. Salazar-Martínez, S. ArévaloGallegos, S. Sinagawa-García, Q. Rascón-Cruz, Expression and characterization of recombinant bovine lactoferrin in E. coli, Biometals 26 (2013) 113–122. [85] L. Jin, L. Li, L. Zhou, R. Zhang, Y. Xu, J. Li, Improving expression of bovine lactoferrin N-lobe by promoter optimization and codon engineering in Bacillus subtilis and its antibacterial activity, J. Agric. Food Chem. 67 (2019) 9749–9756. [86] G.A. Antova, V.T. Gerzilov, Z.Y. Petkova, V.N. Boncheva, I.N. Bozhichkova, D.St. St Penkov, P.B. Petrov, Comparative analysis of nutrient content and energy of eggs from different chicken genotypes, J. Sci. Food Agric. 99 (2019) 5890–5898. [87] S.M. Ackermann, D.W. Lachenmeier, T. Kuballa, B. Schütz, M. Spraul, M. Bunzel, NMR-based differentiation of conventionally from organically produced chicken eggs in Germany, Magn. Reson. Chem. 57 (2019) 579–588. [88] J.H. Lee, H.D. Paik, Anticancer and immunomodulatory activity of egg proteins and peptides: A review, Poult. Sci. 98 (2019) 6505–6516. [89] C. D’Ambrosio, S. Arena, A. Scaloni, L. Guerrier, E. Boschetti, M.E. Mendieta, A. Citterio, P.G. Righetti, Exploring the chicken egg white proteome with combinatorial peptide ligand libraries, J. Proteome Res. 7 (2008) 3461–3474. [90] A. Farinazzo, U. Restuccia, A. Bachi, L. Guerrier, F. Fortis, E. Boschetti, E. Fasoli, A. Citterio, P.G. Righetti, Chicken egg yolk cytoplasmic proteome, mined via combinatorial peptide ligand libraries, J. Chromatogr. A 1216 (2009) 1241–1252. [91] D.J. McNamara, The fifty year rehabilitation of the egg, Nutrients 7 (2015) 8716–8722. [92] Z.S. Clayton, E. Fusco, M. Kern, Egg consumption and heart health: A review, Nutrition 37 (2017) 79–85. [93] K.L. Herron, M.L. Fernandez, Are the current dietary guidelines regarding egg consumption appropriate?, J. Nutr. 134 (2004) 187–190. [94] A. D’Alessandro, P.G. Righetti, E. Fasoli, L. Zolla, The egg white and yolk interactomes as gleaned from extensive proteomic data, J. Proteomics 73 (2010) 1028–1042. [95] I. Arozarena, H. Bertholo, J. Empis, A. Bunger, I. Sousa, Study of the total replacement of egg by white lupine protein, emulsifiers and xanthan gum in yellow cakes, Eur. Food Res. Technol. 213 (2001) 312–316. [96] E. Wilderjans, B. Pareyt, H. Goesaert, K. Brijs, J.A. Delcour, The role of gluten in a pound cake system: A model approach based on gluten–starch blends, Food Chem. 110 (2008) 909–915. [97] M. Lin, S.H. Tay, H. Yang, B. Yang, H. Li, Replacement of eggs with soybean protein isolates and polysaccharides to prepare yellow cakes suitable for vegetarians, Food Chem. 229 (2017) 663–673. [98] Y.Y. Shim, R. Mustafa, J. Shen, K. Ratanapariyanuch, M.J.T. Reaney, Composition and properties of aquafaba: Water recovered from commercially canned chickpeas, J. Vis. Exp. 56305 (2018). [99] Y. He, Y.Y. Shim, R. Mustafa, V. Meda, M.J.T. Reaney, Chickpea cultivar selection to produce aquafaba with superior emulsion properties, Foods 8 (2019) 685. [100] R. Jyotsna, R.S. Sai Manohar, D. Indrani, G. Venkateswara Rao, Effect of whey protein concentrate on the rheological and baking properties of eggless cake, Int. J. Food Prop. 10 (2007) 599–606. [101] S.H. Wani, A. Gull, F. Allaie, T.A. Safapuri, F. Yildiz, Effects of incorporation of whey protein concentrate on physicochemical, texture, and microbial evaluation of developed cookies, Cogent Food Agric. 1 (2015), https://doi.org/10.1080/23311932.2015.1092406. [102] F. Geng, Y. Xie, J. Wang, S. Li, Y. Jin, M. Ma, Large-scale purification of ovalbumin using polyethylene glycol precipitation and isoelectric precipitation, Poult. Sci. 98 (2019) 1545–1550. [103] T.H. Fraser, B.J. Bruce, Chicken ovalbumin is synthesized and secreted by Escherichia coli, Proc. Natl. Acad. Sci. USA 75 (1978) 5936–5940. [104] Y. Liu, A. Su, R. Tian, J. Li, L. Liu, G. Du, Developing rapid growing Bacillus subtilis for improved biochemical and recombinant protein production, Metab. Eng. Commun. 11 (2020) e00141. [105] V. Upadhyay, A. Singh, A.K. Panda, Purification of recombinant ovalbumin from inclusion bodies of Escherichia coli, Protein Expr. Purif. 117 (2016) 52–58. [106] P. Rupa, Y. Mine, Immunological comparison of native and recombinant egg allergen, ovalbumin, expressed in Escherichia coli, Biotechnol. Lett. 25 (2003) 1917–1924. [107] R. Kent, N. Dixon, Contemporary tools for regulating gene expression in bacteria, Trends Biotechnol. 38 (2020) 316–333. [108] A.S. Ondracek, D. Heiden, G.J. Oostingh, E. Fuerst, J. Fazekas-Singer, C. Bergmayr, J. Rohrhofer, E. Jensen-Jarolim, A. Duschl, E. Untersmayr, Immune effects of the nitrated food allergen beta-lactoglobulin in an experimental food allergy model, Nutrients 11 (2019) 2463. [109] J. Sanchón, S. Fernández-Tomé, B. Miralles, B. Hernández-Ledesma, D. Tomé, C. Gaudichon, I. Recio, Protein degradation and peptide release from milk proteins in human jejunum. Comparison with in vitro gastrointestinal simulation, Food Chem. 239 (2018) 486–494. [110] H. Yang, Y. Liu, J. Li, L. Liu, G. Du, J. Chen, Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate, Biotechnol. Bioeng. 117 (2020) 2116–2130. [111] Á. Peirotén, J.M. Landete, Natural and engineered promoters for gene expression in Lactobacillus species, Appl. Microbiol. Biotechnol. 104 (2020) 3797–3805. |