[1] J. Glassey, K. Gernaey, C. Clemens, T.W. Schulz, R. Oliveira, G. Striedner, C.F. Mandenius, Process analytical technology (PAT) for biopharmaceuticals, Biotechnol. J. 6 (4) (2011) 369–377. [2] A. Rathore, R. Bhambure, V. Ghare, Process analytical technology (PAT) for biopharmaceutical products, Anal. Bioanal. Chem. 398 (2010) 137–154 [3] L.L. Simon, H. Pataki, G. Marosi, F. Meemken, K. Hungerbühler, A. Baiker, S.. Tummala, B. Glennon, M. Kuentz, G. Steele, H.J. Kramer, Assessment of recent process analytical technology (PAT)trends:Amultiauthor review,Org.Process Res.Dev.19(1)(2015)3–62. [4] A. Chanda, A.M. Daly, D.A. Foley, M.A. LaPack, S. Mukherjee, J.D. Orr, G.L. Reid III, D.R. Thompson, H.W. Ward, Industry perspectives on process analytical technology:Tools and applications inAPIdevelopment,Org.Process Res.Dev.19 (1)(2015)63–83. [5] Z. Chen, D. Lovett, J. Morris, Process analytical technologies and real time process control areview ofsome spectroscopic issues and challenges,J.Process Control.21(10)(2011)1467–1482. [6] A.S. Rathore, G. Kapoor, Application of process analytical technology for downstream purification ofbiotherapeutics,J.Chem.Technol.Biotechnol.90(2) (2015)228–236. [7] J.L. Koenig, Raman spectroscopy of biological molecules: a review, J. Polym.Sci.: Macromol. Rev. 6 (1) (1972) 159–177. [8] K.A. Esmonde-White, M. Cuellar, C. Uerpmann, B. Lenain, I.R. Lewis, Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing,Anal.Bioanal.Chem.409(3)(2017)637–649. [9] J. Classen, F. Aupert, K.F. Reardon, D. Solle, T. Scheper, Spectroscopic sensors for in-line bioprocess monitoring in research and pharmaceutical industrial application,Anal.Bioanal.Chem.409(3)(2017)651–666. [10] R.S. Das, Y.K. Agrawal, Raman spectroscopy: recent advancements, techniques and applications, Vib. Spectrosc. 57 (2) (2011) 163–176. [11] H. Narayanan, M.F. Luna, M. von Stosch, M.N. Cruz Bournazou, G. Polotti, M. Morbidelli, A. Butte, M. Sokolov, Bioprocessing in the digital age: The role of processmodels,Biotechnol.J.15(1)(2020)1900172. [12] M. Jenzsch, C. Bell, S. Buziol, F. Kepert, H. Wegele, C. Hakemeye, Trends in process analytical technology:present state in bioprocessing,Adv.Biochem. Engin.Biotechnol165(2017)211–252. [13] J. Whelan, S. Craven, B. Glennon, In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors,Biotechnol.Progr.28(5)(2012)1355–1362. [14] D. Yilmaz, H. Mehdizadeh, D. Navarro, A. Shehzad, M. O’Connor, P. McCormick, Application of Raman spectroscopy in monoclonal antibody producing continuous systems for downstream process intensification,Biotechnol.Progr. 14(2019)2947. [15] K. Buckley, P. Matousek, Recent advances in the application of transmission Raman spectroscopy topharmaceutical analysis,J.Pharm.Biomed.Anal.55(4)(2011)645–652. [16] H. Mitsutake, R.J. Poppi, M.C. Breitkreitz, Raman imaging spectroscopy: History,fundamentalsandcurrentscenarioofthetechnique,J.Braz.Chem.Soc.30 (11)(2019)2243–2258. [17] S. Hassing, What Is Vibrational Raman Spectroscopy: A Vibrational or an Electronic Spectroscopic Technique or Both? In: Modern Spectroscopic Techniques and Applications. https://doi.org/10.5772/intechopen.86838. [18] A.L. Derek, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules, John Wiley & Sons, Ltd., New Jersey, USA, 2002. [19] K.F. Gibson, S.G. Kazarian, Tip-enhanced Raman Spectroscopy. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, John Wiley & Sons, Ltd., New Jersey, USA, 2000. [20] J.P. Day, K.F. Domke, G. Rago, H. Kano, H.O. Hamaguchi, E.M. Vartiainen, M. Bonn,Quantitative coherentanti-StokesRamanscattering (CARS)microscopy,J. Phys.Chem.B115(24)(2011)7713–7725. [21] A. Kudelski, Analytical applications of Raman spectroscopy, Talanta 76 (1) (2008) 1–8. [22] D. Zeisel, V. Deckert, R. Zenobi, T. Vo-Dinh, Near-field surface-enhanced Raman spectroscopy ofdyemolecules adsorbed onsilverisland films,Chem.Phys.Lett. 283(5)(1998)381–385. [23] A. Kappler, D. Fischer, S. Oberbeckmann, G. Schernewski, M. Labrenz, K.J. Eichhorn, B. Voit, Analysis of environmental microplastics by vibrational microspectroscopy:FTIR,Raman orboth?,Anal.Bioanal.Chem.408(29)(2016) 8377–8391. [24] V.L. Brewster, R.M. Jarvis, R. Goodacre, Raman spectroscopic techniques for biotechnology and bioprocessing, Eur. Pharm. Rev. 14 (1) (2009) 48–52. [25] H. Yang, J. Irudayaraj, M.M. Paradkar, Discriminant analysis of edible oils and fatsbyFTIR,FT-NIRandFT-Ramanspectroscopy,FoodChem.93(1)(2015)25–32. [26] Y. Ogawa, Y. Yuasa, F. Minami, S. Oda, Tip-enhanced Raman mapping of a single Ge nanowire, Appl. Phys. Lett. 99 (5) (2011) 53–112. [27] P. Surat, Raman imaging techniques, News-Medical (2020), https://www.news-medical.net/life-sciences/Raman-Imaging-Techniques.aspx. [28] A.L. Fussell, P.T. Mah, H. Offerhaus, S.M. Niemi, J. Salonen, H.A. Santos, C. Strachan, Coherent anti-Stokes Raman scattering microscopy driving the future of loadedmesoporous silicaimaging,ActaBiomater.10(11)(2014)4870–4877. [29] P. Wang, S. Pang, B. Pearson, Y. Chujo, L. McLandsborough, M. Fan, L. He, Rapid concentration detection and differentiation of bacteria in skimmed milk using surface enhanced Raman scattering mapping on 4-mercaptophenylboronic acidfunctionalized silver dendrites,Anal.Bioanal.Chem.409(8)(2017)2229–2238. [30] Y. Zhang, S. Zhao, J. Zheng, L. He, Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization, TrendsAnal.Chem.90(2017)1–3. [31] Y. Batonneau, S. Sobanska, J. Laureyns, C. Bremard, Confocal microprobe Ramanimagingofurbantropospheric aerosolparticles,Environ.Sci.Technol.40 (4)(2006)1300–1306. [32] G. Han, R. Liu, M.Y. Han, C. Jiang, J. Wang, S. Du, B. Liu, Z. Zhang, Label-free surface-enhanced Raman scattering imaging to monitor the metabolism of antitumor drug 6-mercaptopurine inliving cells,Anal.Chem.86 (23)(2014) 11503–11507. [33] E. Rani, A.A. Ingale, A. Chaturvedi, M.P. Joshi, L.M. Kukreja, Resonance Raman mapping as a tool to monitor and manipulate Si nanocrystals in Si-SiO2 nanocomposite,Appl.Phys.Lett.107(16)(2015)163–1112. [34] G.C. Eder, L. Spoljaric-Lukacic, B.S. Chernev, Visualisation and characterisation of ageing induced changes of polymeric surfaces by spectroscopic imaging methods,Anal.Bioanal.Chem.403(3)(2012)683–695. [35] R. Tuma, Raman spectroscopy of proteins: From peptides to large assemblies, J. Raman Spectrosc. 36 (4) (2005) 307–319. [36] W. Zhang, J. Ma, D.W. Sun. Raman spectroscopic techniques for detecting structure andqualityoffrozenfoods:principles andapplications.Crit.Rev.Food Sci.Nutr.https://doi.org/10.1080/10408398.2020.1828814. [37] H. Jiang, W. Xu, Y. Ding, Q. Chen, Quantitative analysis of yeast fermentation process using Raman spectroscopy: Comparison of CARS and VCPA for variable selection, Spectrochim. Acta A:Mol.Biomol. Spectrosc. 228 (2020) 117781. [38] J.A. Iversen, R.W. Berg, B.K. Ahring, Quantitative monitoring of yeast fermentation using Raman spectroscopy, Anal.Bioanal.Chem.406(20)(2014) 4911–4919. [39] M.S. Bergholt, A. Serio, M.B. Albro, Raman imaging: Guiding light for the extracellular matrix, Front. Bioeng. Biotechnol. 7 (2019) 303. [40] J. Lin, J. Zheng, A. Wu, An efficient strategy for circulating tumor cell detection: surface-enhanced Raman spectroscopy,J.Mater.Chem.B.8(16)(2020)3316–3326. [41] O. Ryabchykov, S. Guo, T. Bocklitz, Analyzing Raman spectroscopic data,Phys. Sci. Rev. 4 (2) (2018) 20. [42] T. Bocklitz, A. Walter, K. Hartmann, P. Rösch, J. Popp, How to pre-process Ramanspectraforreliableandstablemodels?,Anal.Chim.Acta704(1–2)(2011) 47–56. [43] N.K. Afseth, V.H. Segtnan, J.P. Wold, Raman spectra of biological samples: A study of preprocessing methods, Appl. Spectrosc. 60 (12) (2006) 1358–1367. [44] J.R. Beattie, J.J. McGarvey, Estimation of signal backgrounds on multivariate loadings improves model generation in face of complex variation in backgrounds and constituents, J.RamanSpectrosc.44(2)(2013)329–338. [45] R.F. Li, X.Z. Wang, Dimension reduction of process dynamic trends using independent component analysis, Comput. Chem. Eng. 26 (3) (2002) 467–473. [46] N.D. Lourenco, J.A. Lopes, C.F. Almeida, M.C. Sarraguça, H.M. Pinheiro, Bioreactor monitoring with spectroscopy and chemometrics:areview,Anal. Bioanal.Chem.404(4)(2012)1211–1237. [47] J.C. Gunther, J.S. Conner, D.E. Seborg, Fault detection and diagnosis in an industrial fed-batch cell culture process,Biotechnol.Progr.23(4)(2007)851–857. [48] H. Wang, Z. Song, P. Li, Fault detection behavior and performance analysis of principal component analysis based process monitoring methods,Ind.Eng. Chem.Res.41(10)(2002)2455–2464. [49] C. Cimander, T. Bachinger, C.F. Mandenius, Assessment of the performance of a fed-batch cultivation from the preculture quality using an electronic nose, Biotechnol. Prog. 18 (2002) 380–386. [50] S.M. Mercier, B. Diepenbroek, M.C. Dalm, R.H. Wijffels, M. Streefland, Multivariate data analysis as a PAT tool for early bioprocess development data, J. Biotechnol. 167 (3) (2013) 262–270. [51] M. Kalyanpur, Downstream processing in the biotechnology industry, Mol. Biotechnol. 22 (1) (2002) 87–98. [52] M. Rudt, T. Briskot, J. Hubbuch, Advances in downstream processing of biologics –Spectroscopy:An emerging process analytical technology,J. Chromatogr.A.1490(2017)2–9. [53] L. Jin, S.F. Wang, Y.Y. Cheng, A Raman spectroscopy analysis method for rapidly determining saccharides and its application to monitoring the extraction processof Wenxingranule manufacturing procedure,Spectrochim.Acta,PartA (2020)118603. [54] E. Iva, R.A. Ando, P. Corio, Solid-liquid-liquid extraction as an approach to the sensitive detection of a hydrophobic pollutant through surface-enhanced Ramanspectroscopy,Vib.Spectrosc.87(2016)116–122. [55] M. Martinez, M. Spitali, E.L. Norrant, D.G. Bracewell, Precipitation as an enabling technology fortheintensi ficationofbiopharmaceutical manufacture, TrendsBiotechnol.37(3)(2019)237–241. [56] B. Han, M. Louhi-Kultanen, Real-time Raman monitoring of calcium phosphate precipitation in a semi-batch stirred crystallizer,Cryst.Growth Des.18 (3) (2018)1622–1628. [57] B. Eddhif, N. Guignard, Y. Batonneau, J. Clarhaut, S. Papot, C. Geffroy-Rodier, P. Poinot, TCA precipitation and ethanol/HCl single-step purification evaluation: One-dimensional gel electrophoresis, bradford assays, spectrofluorometry and Raman spectroscopy data onHSA,Rnase,lysozyme -Mascots andSkyline data, DataBri.17(2018)938–953. [58] M. Kogler, B. Zhang, L. Cui, Y. Shi, M. Yliperttula, T. Laaksonen, T. Viitala, K. Zhang,Real-time Raman based approach foridentification ofbiofouling,Sens. Actuators,B:Chem.230(2016)411–421. [59] J. Tang, H. Jia, M. Situ, F. Gao, Q.W. Qin, W.J. Wang, Characterizing synergistic effect of coagulant aid and membrane fouling during coagulationultrafiltration viain-situRaman spectroscopy andelectrochemical impedance spectroscopy,WaterRes.172(2020)115477. [60] S.G. Yan, L.P. Zhu, H.N. Su, X.Y. Zhang, X.L. Chen, B.C. Zhou, Y.Z. Zhang, Singlestep chromatography for simultaneous purification of C-phycocyanin and allophycocyanin with high purity and recovery from Spirulina (Arthrospira) platensis,J.Appl.Phycol.23(1)(2011)1–6. [61] B. Philippe, A.F. Alexandre, C.M. Vidal, L. Frédéric, Raman spectroscopy vs. high performance liquid chromatography for quality control of complex therapeutic objects: Model of elastomeric portable pumps filled with a fluorouracilsolution,J.Pharm.Bio.Anal.91(2014)176–184. [62] B. Sägmüller, B. Schwarze, G. Brehm, G. Trachta, S. Schneider, Identification of illicit drugs by a combination of liquid chromatography and surface-enhanced Raman scattering spectroscopy,J.Mol.Struct.662(2003)279–290. [63] Y. Fujioka, Influence of temperature on Raman lines, Nature 124 (1929) 11. [64] D. Bersani, P.P. Lottici, Applications of Raman spectroscopy to gemology,Anal. Bioanal. Chem. 397 (2010) 2631–2646. |