[1] D.C.Montgomery, Introduction to statistical quality control,Wiley, New York, 1991. [2] J. Yu, J. Yu, Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis, Ind. Eng. Chem. Res. 50(6) (2011) 3390-3402. [3] J. Kresta, J.F. MacGregor, T.E. Marlin, Multivariate statistical monitoring of process operating performance, Can. J. Chem. Eng. 69(1) (1991) 35-47. [4] P. Nomikos, J.F. MacGregor, Monitoring batch processes using multiway principal component analysis, AICHE J. 40(8) (1994) 1361-1375. [5] T. Kourti, J.F.MacGregor, Process analysis,monitoring and diagnosis, usingmultivariate projection methods, Chemom. Intell. Lab. Syst. 28(95) (1995) 3-21. [6] Y.W. Zhang, C.Ma, Fault diagnosis of nonlinear processes usingmultiscale KPCA and multiscale KPLS, Chem. Eng. Sci. 66(1) (2010) 64-72. [7] G.Z.Wang, J.C. Liu, Y.W. Zhang, Y. Li, A novelmulti-mode data processingmethod and its application in industrial process monitoring, J. Chemom. 29(2) (2015) 126-138. [8] Y. Yao, T. Chen, F. Gao, Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information, J. Process Control 20(10) (2011) 1188-1197. [9] J. Wang, Q.P. He, Multivariate statistical process monitoring based on statistics pattern analysis, Ind. Eng. Chem. Res. 49(17) (2010) 7858-7869. [10] Z.Q. Ge, C.J. Yang, Z.H. Song, Improved kernel PCA-based monitoring approach for nonlinear processes, Chem. Eng. Sci. 64(9) (2009) 2245-2255. [11] J.Y. Guo, H.B. Chen, Y. Li, MPCA fault detection method based onmultiblock statistics for uneven-length batch processes, J. Comput. Inf. Syst. 9(18) (2013) 7181-7190. [12] X. Wang, U. Kruger, G.W. Irwin, G. McCullough, N. McDowell, Nonlinear PCA with the local approach for diesel engine fault detection and diagnosis, IEEE Trans. Control Syst. Technol. 16(1) (2008) 122-129. [13] Y.H. Lee, H.D. Jin, C.H. Han, On-line process state classification for adaptive monitoring, Ind. Eng. Chem. Res. 45(9) (2006) 3095-3107. [14] X.Z. Wang, S. Medasani, F. Marhoon, H. Albazzaz, Multidimensional visualization of principal component scores for process historical data analysis, Ind. Eng. Chem. Res. 43(22) (2004) 7036-7048. [15] M. Kano, K. Nagao, H. Hasebe, T. Hashimoto, H. Ohno, R. Strauss, B.R. Bakshi, Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem, Comput. Chem. Eng. 26(1) (2002) 161-174. [16] B.R. Bakshi,Multiscale PCA with applications tomultivariate statistical process monitoring, AICHE J. 44(7) (1998) 1596-1610. [17] J.E. Jackson, A user's guide to principal components, Wiley, New York, 1991. [18] J.F. MacGregor, C. Jaeckle, C. Kiparissides, M. Kourtoudi, Process monitoring and diagnosis by multiblock PLS methods, AICHE J. 40(5) (1994) 826-838. [19] J.A. Westerhuis, T. Kourti, J.F. MacGregor, Analysis of multiblock and hierarchical PCA and PLS models, J. Chemom. 12(5) (1998) 301-321. [20] S.J. Qin, S. Valle, M.J. Piovoso, On unifying multiblock analysis with application to decentralized process monitoring, J. Chemom. 15(9) (2001) 715-742. [21] A.K. Smilde, J.A.Westerhuis, S. DeJong, A framework for sequential multiblock component methods, J. Chemom. 17(6) (2003) 323-337. [22] G.Z. Wang, J.C. Liu, Y. Li, L.L. Shang, Fault detection based on diffusion maps and k nearest neighbor diffusion distance of feature space, J. Chem. Eng. Jpn. 48(9) (2015) 756-765. [23] M.A. Hussain, C.R. Che Hassan, K.S. Loh, K.W. Mah, Application of artificial intelligence technique in process fault diagnosis, J. Eng. Sci. Technol. 2(3) (2007) 260-270. [24] H. Guo, H.G. Li, On-line batch process monitoring with improved multi-way independent component analysis, Chin. J. Chem. Eng. 21(3) (2013) 263-270. [25] X. Deng, X. Tian, Multimode process fault detection using local neighborhood similarity analysis, Chin. J. Chem. Eng. 22(11) (2014) 1260-1267. [26] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S.N. Kavuri, A review of process fault detection and diagnosis:Part I:Quantitative model-based methods, Comput. Chem. Eng. 27(3) (2003) 293-311. [27] V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, A review of process fault detection and diagnosis:Part Ⅱ:Qualitative models and search strategies, Comput. Chem. Eng. 27(3) (2003) 313-326. [28] V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, K. Yin, A review of process fault detection and diagnosis:Part Ⅲ:Process history based methods, Comput. Chem. Eng. 27(3) (2003) 327-346. [29] F. Yang, P. Duan, S.L. Shah, T. Chen, Capturing connectivity and causality in complex industrial processes, Springer, 2014. [30] C.K. Lau, K. Ghosh, M.A. Hussain, C.R. Hassan, Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS, Chemom. Intell. Lab. Syst. 120(2) (2013) 1-14. [31] S.W. Choi, I.B. Lee, Multiblock PLS-based localized process diagnosis, J. Process Control 15(2005) 295-306. [32] G.A. Cherry, S.J. Qin, Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis, IEEE Trans. Semicond. Manuf. 19(2) (2006) 159-172. [33] Z.Q. Ge, Z.H. Song, Two-level multiblock statistical monitoring for plant-wide processes, Korean J. Chem. Eng. 26(6) (2009) 1467-1475. [34] H. Yue, S.J. Qin, Reconstruction based fault identification using a combined index, Ind. Eng. Chem. Res. 20(2001) 4403-4414. [35] T. Chen, Y. Sun, Probabilistic contribution analysis for statistical process monitoring:A missing variable approach, Control. Eng. Pract. 17(4) (2009) 469-477. [36] V. Kariwala, P.E. Odiowei, Y. Cao, T. Chen, A branch and bound method for isolation of faulty variables through missing variable analysis, J. Process Control 20(10) (2010) 1198-1206. [37] J.A. Westerhuis, S.P. Gurden, A.K. Smilde, Generalized contribution plots inmultivariate statistical process monitoring, Chemom. Intell. Lab. Syst. 51(2000) 95-114. [38] T. Kourti, J.F. MacGregor, Multivariate SPC methods for process and product monitoring, J. Qual. Technol. 28(1996) 409-428. [39] R. Dunia, S.J. Qin, Subspace approach tomultidimensional fault identification and reconstruction, AICHE J. 44(8) (1998) 1813-1831. [40] S.J. Qin, H.H. Yue, R. Dunia, Self-validating inferential sensors with application to air emission monitoring, Ind. Eng. Chem. Res. 36(5) (1997) 1675-1685. [41] C.F. Alcala, S.J. Qin, Reconstruction-based contribution for process monitoring, Automatica 45(7) (2009) 1593-1600. [42] J.L. Liu, Fault diagnosis using contribution plots without smearing effect on nonfaulty variables, J. Process Control 22(9) (2012) 1609-1623. [43] G.Z. Wang, J.C. Liu, Y. Li, Fault diagnosis using kNN reconstruction on MRI variables, J. Chemom. 29(7) (2015) 399-410. [44] S.J. Qin, Survey on data-driven industrial process monitoring and diagnosis, Annu. Rev. Control. 36(2) (2012) 220-234. [45] H. Xu, F. Yang, H. Ye,W. Li, P. Xu, A.K. Usadi,Weighted reconstruction-based contribution for improved fault diagnosis, Ind. Eng. Chem. Res. 52(29) (2013) 9858-9870. [46] L.H. Chiang, E. Russell, R.D. Braatz, Fault detection and diagnosis in industrial systems, Springer Verlag, London, 2001. [47] R.A. Johnson, D.W. Wichem, Applied multivariate statistical analysis, Prentice Hall, New Jersey, 1992. [48] A. Alawi, S.W. Choi, E. Martin, J. Morris, Sensor fault identification using weighted combined contribution plots, Fault detection, supervision, and safety of technical processes 2007, pp. 908-913. [49] J.L. Liu, D.S. Chen, Fault isolation using modified contribution plots, Comput. Chem. Eng. 61(3) (2014) 9-19. [50] J.M. Lee, C.K. Yoo, S.W. Choi, P.A. Vanrolleghem, I.B. Lee, Nonlinear process monitoring using kernel principal component analysis, Chem. Eng. Sci. 59(2004) 223-234. [51] J. Yu, S.J. Qin, Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models, AICHE J. 54(7) (2008) 1811-1829. [52] J. Lee, B. Kang, S. Kang, Integrating independent component analysis and local outlier factor for plant-wide processmonitoring, J. Process Control 21(7) (2011) 1011-1021. |