[1] R. Tozer, R.W. James, Fundamental thermodynamics of ideal absorption cycles, Int. J. Refrig. 20(1997) 120-135. [2] V. Tufano, Simplified criteria for the development of new absorption working pairs, Appl. Therm. Eng. 18(1998) 171-177. [3] A. Costa, B. Bakhtiari, S. Schuster, J. Paris, Integration of absorption heat pumps in a Kraft pulp process for enhanced energy efficiency, Energy 34(2009) 254-260. [4] P. Srikhirin, S. Aphornratana, S. Chungpaibulpatana, A review of absorption refrigeration technologies, Renew. Sust. Energ. Rev. 5(2001) 343-372. [5] J.T. Mc Mullan, Refrigeration and the environment-issues and strategies for the future, Int. J. Refrig. 25(2002) 89-99. [6] G.A. Floride, S.A. Kalogirou, S.A. Tassou, L.C. Wrobel, Modelling, simulation 460 and warming impact assessment of a domestic-size absorption solar cooling system, Appl. Therm. Eng. 22(2002) 1313-1325. [7] N.A. Darwish, S.H. Al-Hashimi, A.S. Al-Mansoori, Performance analysis and evaluation of a commercial absorption-refrigeration water-ammonia (ARWA) system, Int. J. Refrig. 7(2008) 1214-1223. [8] D.S. Kim, C.A. Infante Ferreira, Analytic modelling of steady state single-effect absorption cycles, Int. J. Refrig. 31(6) (2008) 1012-1020. [9] X. Zhang, D. Hu, Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water, Appl. Therm. Eng. 37(2012) 129-135. [10] J. Sun, L. Fu, S. Zhang, W. Hou, A mathematical model with experiments of single effect absorption heta pump using LiBr-H2O, Appl. Therm. Eng. 30(2010) 2753-2762. [11] J.L. Rodríguez-Muñoz, J.M. Belman-Flores, Review of diffusion-absorption refrigeration technologies, Renew. Sust. Energ. Rev. 30(2014) 145-153. [12] H.M. Hellmann, F. Ziegler, Simple absorption heat pump modules for system simulation programs, ASHRAE Trans. (1999) 780-787. [13] O. Kaynakli, M. Kilic, Theoretical study on the effect of operating conditions on performance of absorption refrigeration system, Energy Convers. Manag. 48(2) (2007) 599-607. [14] Z. Kravanja, I.E. Grossmann, Computational approach for the modelling/decomposition strategy in the MINLP optimization of process flowsheets with implicit models, Ind. Eng. Chem. Res. 35(1996) 2065-2070. [15] M.S. Diaz, J.A. Bandon, A mixed integer optimization strategy for a large chemical plant in operation, Comput. Chem. Eng. 20(1996) 531-545. [16] J.A. Caballero, D. Milan-Yanez, I.E. Grossmann, Rigorous design of distillation columns:Integration of disjunctive programming and process simulators, Ind. Eng. Chem. Res. 44(2005) 6760-6775. [17] H. Kim, I.H. Kim, E.S. Yoon, Multi objective design of calorific value adjustment process using process simulators, Ind. Eng. Chem. Res. 49(2010) 2841-2848. [18] R. Brunet, G. Guillen-Gosalbez, L. Jimenez, Cleaner design of single-product biotechnological facilities through the integration of process simulation, multi objective optimization, life cycle assessment, and principal component analysis, Ind. Eng. Chem. Res. 51(2012) 410-424. [19] S.C. Kaushik, A. Arora, Energy and exergy analysis of single effect and series flow double effect water-lithium bromide absorption refrigeration systems, Int. J. Refrig. 32(2009) 1247-1258. [20] A. Arora, S.C. Kaushik, Theoretical analysis of LiBr/H2O absorption refrigeration systems, Int. J. Energy Res. 33(15) (2009) 1321-1340. [21] B. Borgas, Development of the Hybrid Absorption Heat Pump Process at High Temperature Operation, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2014. [22] D. Boer, M. Valles, A. Coronas, Performance of double effect absorption compression cycles for air-conditioning using methanol-TEGDME and TFE-TEGDME systems as working pairs, Int. J. Refrig. 21(7) (1998) 542-555. [23] R. Ayala, C.L. Heard, F.A. Holland, Ammonia/lithium nitrate absorption/compression refrigeration cycle. Part I. Simulation, Appl. Therm. Eng. 17(1997) 223-233. [24] G. Maurer, Electrolyte solutions, Fluid Phase Equilib. 13(1983) 269-296. [25] E.A. Guggenheim, The specific thermodynamic properties of aqueous solutions of strong electrolytes, Philos. Mag. 19(1935) 588-643. [26] J.N. Bronstedt, J. Amer, Calculation of the osmotic and activity functions in solutions of uni-univalents salts, J. Am. Chem. Soc. 44(5) (1922) 938-948. [27] L.A. Bromley, Approximate individual ion values of β (or B) in extended DebyeHückel theory for uni-univalent aqueous solutions at 298.15 K, J. Chem. Thermodyn. 4(5) (1972) 669-673. [28] K.S. Pitzer, Thermodynamics of electrolyte. I. Theorical basis and general equations, J. Phys. Chem. 77(1973) 268-277. [29] J.L. Cruz, H. Renon, New thermodynamic representation of binary electrolyte-Solutions non-ideality in whole range of concentrations, AIChE J. 24(1978) 817-830. [30] F.X. Ball, W. Furst, H. Renon, An NRTL model for representation and prediction of deviation from ideality in electrolyte solutions compared to the models of Chen (1982) and Pitzer (1973), AIChE J 31(1985) 392-399. [31] C.C. Chen, L.B. Evans, A local composition model for the excess Gibbs energy of aqueous-electrolyte systems, AIChE J. 32(1986) 444-454. [32] A. Haghtalab, J.H. Vera, A nonrandom factor model for the excess Gibbs energy of electrolyte solutions, AIChE J. 34(1988) 803-813. [33] Y. Liu, A.H. Harvey, J.M. Prausnitz, Thermodynamics of concentrated electrolyte solutions, Chem. Eng. Commun. 77(1989) 43-66. [34] B. Sander, P. Rasmussen, A. Fredenslund, Calculation of vapor-liquid Equilibria in nitric-acid water nitrate salt systems using an extended Uniquac equation, Chem. Eng. Sci. 41(1986) 1185-1195. [35] E.A. Macedo, P. Skovborg, P. Rasmussen, Calculation of phase equilibria for solutions of strong electrolytes in solvent-Water mixtures, Chem. Eng. Sci. 45(1990) 875-882. [36] J.F. Zemaitis Jr., D.M. Clark, M. Rafal, N.C. Scrivner, Handbook of Aqueous Electrolyte Thermodynamics, DIPPR, AIChE, New York, 1986. [37] H. Renon, Electrolyte solutions, Fluid Phase Equilib. 30(1986) 181-195. [38] K.S. Pitzer, Activity Coefficients in Electrolyte Solutions, 2nd edition CRC Press, Boca Raton, FL, 1991. [39] M. Rafal, J.W. Berthold, N.C. Scrivner, S.L. Grise, Models for Electrolyte Solutions, in:S.I. Sandler (Ed.), Models for Thermodynamic and Phase Equilibria Calculations, Marcell Dekker, New York 1994, p. 601. [40] J.R. Loehe, M.D. Donohue, Recent advances in modeling thermodynamic properties of aqueous strong electrolyte systems, AIChE J. 43(1997) 180-195. [41] B.E. Conway, J.O'.M. Bockris, E. Yearg, S.U.M. Kham, R.E. White, Comprehensive Treatise of Electrochemistry, Plenum Press, New York, 1983. [42] R.M. Mazo, C.Y. Mou, in:K.S. Pitzer (Ed.), Activity coefficients in electrolyte solutions, 2nd editionCRC Press, Boca Raton, FL, 1991. [43] G. Grossman, K.W. Childs, Computer simulation of a lithium bromide-water absorption heat pump for temperature boosting, ASHRAE Trans. 89(1b) (1983) 240-248. [44] G. Grossman, Modular Simulation of Absorption Systems. User's Guide and Reference Windows. Version 5.0(AbsimW), 1998. [45] M.O. Mc Linden, S.A. Klein, Steady state modeling of absorption heat pumps with a comparison to experiments, ASHRAE Trans. 91(2b) (1985) 1793-1807. [46] H. Perez-Blanco, M.R. Patterson, Conceptual Design and Optimization of a Versatile Absorption Heat Transformer. ORNL/TM-9841, Oak Ridge National Laboratory, 1986. [47] G.C. Vliet, M.B. Lawson, R.A. Lithgow, Water-lithium bromide double effect absorption cooling cycle analysis, ASHRAE Trans. 88(1) (1982) 811-823. [48] J.D. Marcos, M. Izquierdo, E. Palacios, New method for COP optimization in waterand air-cooled single and double effect LiBr-water absorption machines, Int. J. Refrig. 34(2011) 1348-1359. [49] R. Gomri, Second law comparison of single effect and double effect vapour absorption refrigeration systems, Energy Convers. Manag. 50(2009) 1279-1287. [50] L.M. Chavez-Islas, C.L. Heard, Optimization of a simple ammonia-water absorption refrigeration cycle by application of mixed-integer nonlinear programming, Ind. Eng. Chem. Res. 48(4) (2009) 1957-1972. [51] L.M. Chavez-Islas, C.L. Heard, I.E. Grossmann, Synthesis and optimization of an ammonia/water absorption refrigeration cycle considering different types of heat exchangers by application of mixed-integer nonlinear programming, Ind. Eng. Chem. Res. 48(6) (2009) 2972-2990. [52] B.H. Gebreslassie, G. Guillen-Gosalbez, L. Jimenez, D. Boer, Design of environmentally conscious absorption cooling systems via multi-objective optimization and life cycle assessment, Appl. Energy 86(9) (2009) 1712-1722. [53] B.H. Gebreslassie, G. Guillen-Gosalbez, L. Jimenez, D. Boer, Economic performance optimization of an absorption cooling system under uncertainty, Appl. Therm. Eng. 29(17-18) (2009) 3491-3500. [54] A. Brooke, D. Kendrick, A. Meeraus, GAMS e a User's Guide (Release 2.25), The Scientific Press, San Francisco, 1996. [55] P.I. Barton, C.C. Pantelides, gPROMS e a combined discrete/continuous modeling environment for chemical processing systems, Simul. Ser. 25(3) (1993) 25-34. [56] R. Fourer, D.M. Gay, B.W. Kernighan, A modeling language for mathematical programming, Manag. Sci. 36(1990) 519-554. [57] C.R. Maya, J.J. Pacheco-Ibarra, J.M. Belman-Flores, S.R. Galván-González, C. Mendoza-Covarrubias, NLP model of a LiBr-H2O absorption refrigeration system for the minimization of the annual operating cost, Appl. Therm. Eng. 37(2012) 10-18. [58] M.S. Mazzei, M.C. Mussati, S.F. Mussati, NLP model-based optimal design of LiBrH2O absorption refrigeration systems, Int. J. Refrig. 38(2014) 58-70. [59] A. Kodal, B. Sahin, A.S. Oktem, Performance analysis of two stage combined heat pump system based on termo-economic optimization criterion, Energy Convers. Manag. 41(18) (2000) 1989-2008. [60] A. Kodal, B. Sahin, A. Erdil, Performance analysis of a two stage irreversible heat pump under maximum heating load per unit total cost conditions, Int. J. Exergy 2(3) (2002) 159-166. [61] A. Kodal, B. Sahin, I. Ekmekei, T. Yilmaz, Thermo economic optimization for irreversible absorption refrigerator and heat pumps, Energy Convers. Manag. 44(1) (2003) 109-123. [62] R.D. Misra, P.K. Sahoo, S. Sahoo, A. Gupta, Thermo economic optimization of a single effect water/LiBr vapour absorption refrigeration system, Int. J. Refrig. 26(2) (2003) 158-169. [63] R.D. Misra, P.K. Sahoo, S. Sahoo, A. Gupta, Thermo economic evaluation and optimization of a double-effect H2O/LiBr vapour-absorption refrigeration system, Int. J. Refrig. 28(3) (2005) 331-343. [64] R.D. Misra, P.K. Sahoo, S. Sahoo, A. Gupta, Thermo economic evaluation and optimization of an aqua-ammonia vapour absorption refrigeration system, Int. J. Refrig. 29(1) (2006) 47-59. [65] B. Sahin, A. Kodal, Thermo economic optimization of a two stage combined refrigeration system:A finite-time approach, Int. J. Refrig. 25(7) (2002) 872-877. [66] O. Kızılkan, A. Sencan, S.A. Kalogirou, Thermo economic optimization of a LiBr absorption refrigeration system, Chem. Eng. Process. 46(12) (2007) 1376-1384. [67] R. Palacios Bereche, R. Gonzales Palomino, S.A. Nebra, Thermo economic analysis of a single and double-effect LiBr/H2O absorption refrigeration system, Int. J. Thermodyn. 12(2) (2009) 89-98. [68] C.M.R. Varani, C.A.C. Santos, R.R. Gondim, E.A. Torres, Energetic and exergetic evaluation of an lithium bromide/water absorption refrigeration system utilizing natural gas, Proc. of ECOS2003, Copenhagen, Denmark, June 30-July 22003, pp. 1597-1619. [69] P.K. Sahoo, R.D. Misra, A. Gupta, Exergoeconomic optimisation of an aquaammonia absorption refrigeration system, Int. J. Exergy 1(1) (2005) 82-93. [70] D.A. Al-Otaibi, I. Dincer, M. Kalyon, Thermo-economic optimization of vaporcompression refrigeration systems, Int. Commun. Heat Mass Transfer 31(1) (2004) 95-107. [71] S. Jeong, B.H. Kang, S.W. Karng, Dynamic simulation of an absorption heat pump for recovering low-grade waste heat, Appl. Therm. Eng. 18(1998) 1-12. [72] D.G. Fu, G. Poncia, Z. Lu, Implementation of an object-oriented dynamic modeling library for absorption refrigeration systems, Appl. Therm. Eng. 26(2006) 217-225. [73] P. Kohlenbach, F. Ziegler, A dynamic simulation model for transient absorption chiller performance. Part I:The model, Int. J. Refrig. 31(2008) 217-225. [74] P. Kohlenbach, F. Ziegler, A dynamic simulation model for transient absorption chiller performance. Part Ⅱ:Numerical results and experimental verification, Int. J. Refrig. 31(2008) 226-233. [75] Y. Takagi, T. Nakamaru, Y. Nishitani, An absorption chiller model for HVACSIM+, IBPSA Conference 1999, Kyoto, Japan, September 13-15, 1999. [76] A. Palau, E. Velo, L. Puigjaner, Use of neural networks and expert systems to control a gas/solid sorption chilling machine, Int. J. Refrig. 22(1999) 59-66. [77] A. Myat, K. Thu, Y.D. Kim, A. Chakraborty, W.G. Chun, K.C. Ng, A second law analysis and entropy generation minimization of an absorption chiller, Appl. Therm. Eng. 31(2011) 2405-2413. [78] G. Evola, N. Le Pierrè, F. Boudehenn, P. Papillon, Proposal and validation of a model for the dynamic simulation of a solar-assisted single-stage LiBr/water absorption chiller, Int. J. Refrig. 36(2013) 1015-1028. [79] M. Zinet, R. Rulliere, P. Haberschill, A numerical model for the dynamic simulation of a recirculation single effect absorption chiller, Energy Convers. Manag. 62(2012) 51-63. [80] J. Seo, Y. Shin, J. Dong Chung, Dynamics and control of solution levels in a high temperature generator for an absorption chiller, Int. J. Refrig. 35(2012) 1123-1129. [81] A. Iranmanesh, M.A. Mehrabian, Thermodynamic modelling of a double-effect LiBr-H2O absorption refrigeration cycle, Heat Mass Transf. 48(12) (2012) 2113-2123. [82] A. Iranmanesh, M.A. Mehrabian, Dynamic simulation of a single-effect LiBr-H2O absorption refrigeration cycle considering the effects of thermal masses, Energy Build. 60(2013) 47-59. [83] V. Congradac, F. Kulic, Recognition of the importance of using artificial neural networks and genetic algorithms to optimize chiller operation, Energy Build. 47(2012) 651-658. [84] O. Kaynakli, R. Yamankaradeniz, Thermodynamic analysis of absorption refrigeration system based on entropy generation, Curr. Sci. 92(4) (2007) 472-479. [85] S. Aphornratana, T. Sriveerakul, Experimental studies of a single-effect absorption refrigerator using aqueous lithium-bromide:Effect of operating condition to system performance, Exp. Thermal Fluid Sci. 32(2007) 658-669. [86] M.I. Karamangil, S. Coskun, O. Kaynakli, N. Yamankaradeniz, A simulation study of performance evaluation of single-stage absorption refrigeration system using conventional working fluids and alternatives, Renew. Sust. Energ. Rev. 14(2010) 1969-1978. [87] K. Klein, K. Huchtemann, D. Muller, Numerical study on hybrid heat pump systems in existing buildings, Energy Build. 69(2014) 193-201. [88] G. Bagarella, R. Lazzarin, M. Noro, Annual simulation, energy and economic analysis of hybrid heat pump systems for residential buildings, Appl. Therm. Eng. 99(2016) 485-494. [89] F. Ziegler, G. Hammer, Experimental results of a double-lift absorption heat pump, Proc. 4th Hrernational Cotzf:On Application and Ejicieny of Heat Pump Systems in Environmentally Sensitive Times, Munich, Germany 1991, pp. 49-58(l-3 October). [90] R. Ayala, An Experimental Study of Heat Driven Absorption Cooling Systems. Ph.D Thesis University of Salford, UK, 1995. [91] A. Jaretun, G. Aly, New local composition model for electrolyte solutions:Multicomponent systems, Fluid Phase Equilib. 175(2000) 213-228. [92] C.C. Chen, Y.S. Somerville, Computer method and system for predicting physical properties using a conceptual segment-based ionic activity coefficient model, US 7,809,540 B2, Oct. 5, 2010. [93] A. Jaretun, G. Aly, New local composition model for electrolyte solutions:Single solvent, single electrolyte systems, Fluid Phase Equilib. 163(1999) 175-193. [94] C.C. Chen, Computer method and system for predicting physical propertie using a conceptual segment model, US 8,666,675 B2, Mar. 4, 2014. [95] C.C. Chen, Y.S. Somerville, Method of modelling physical properties of chemical mixtures and articles of use, US 8,346,525 B2, Jan. 1, 2013. [96] J.M. Prausnitz, R.N. Lichtenthaler, E.G. de Azevedo, Molecular Thermodynamics of Fluid Phase Equilibria, third ed. Prentice Hall, New Jersey, 1999537-556. [97] D.W. Sun, Thermodynamic design data and optimum design maps for absorption refrigeration systems, Appl. Therm. Eng. 17(1997) 211-221. [98] G. Leonzio, Recovery of base metal sulphates and hydrochloric acid regeneration from spent pickling liquors:Process simulation, J. Clean. Prod. 129(2015) 417-426. [99] K.E. N'Tsoukpoe, M. Perier-Muzet, N. Le Pierres, L. Luo, D. Mangin, Thermodynamic study of a LiBr-H2O absorption process for solar heat storage with crystallisation of the solution, Sol. Energy 104(2014) 2-15. [100] A.M.K. Bahman, Modeling of Solar-Powered Single-Effect Absorption Cooling System and Supermarket Refrigeration/HVAC System, PhD Thesis, University of South Florida, 2011. [101] T. Berlitz, B. Cerkvenik, H.M. Hellmann, F. Ziegler, The impact of work input sorption cycles, Int. J. Refrig. 24(2001) 88-99. [102] K.E. Herold, R. Radermacher, S.A. Klein, Absorption Chillers and Heat Pumps, CRC Press Inc., 1996 [103] B. Bakhtiari, L. Fradette, R. Legros, J. Paris, A model for analysis and design of H2O-LiBr absorption heat pumps, Energy Convers. Manag. 52(2011) 1439-1448. [104] W. Wu, X. Zhang, X. Li, W. Shi, B. Wang, Comparisons of different working pairs and cycles on the performance of absorption heat pump for heating and domestic hot water in cold regions, Appl. Therm. Eng. 48(2012) 349-358. [105] Z. Hariz, Analysis of Absorption Chiller for Heat Recovery Purpose, Final Year Project, Faculty of Engineering-Branch Ⅲ-Lebanese University, Lebanon, 2003. [106] N. Zang, K. Wang, N. Lior, W. Han, Performance study and energy saving mechanism analysis of an absorption/mechanical hybrid heat pump cycle, The 28th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, June 30-July 3, Pau, France, 2015. [107] D. Boer, M.H. Huor, M. Prevost, A. Coronas, Combined vapour-compression-double effect absorption cycle for air conditioning:a new high performance cycle, Proc. IAHP Conf., New Orleans, LA. ASME, AES 311994, pp. 483-486. [108] N. Sawada, K. Minato, Y. Kunugi, T. Mochizuki, T. Kashiwagi, Cycle simulation/COP evaluation of compression hybrid Heat pump:heat amplifier type, in:Proceedings of the International Absorption Heat Pump Conference (Ed.) 31, ASME AES, New Orleans 1994, pp. 471-476. |