[1] B.Yu. Shekunov, P. York, Crystallization processes in pharmaceutical technology and drug delivery design, J. Cryst. Growth 211(2000) 122-136.[2] E.L. Paul, H.H. Tung, M. Midler, Organic crystallization processes, Powder Technol. 150(2) (2005) 133-143.[3] Z.Q. Yu, J.W. Chew, P.S. Chow, R.B.H. Tan, Recent advances in crystallization control, Chem. Eng. Res. Des. 85(7) (2007) 893-905.[4] D.A. Berry, K.M. Ng, Synthesis of reactive crystallization processes, AIChE J. 43(7) (1997) 1737-1750.[5] D. Logashenko, T. Fischer, S. Motz, E.D. Gilles, G. Wittum, Simulation of crystal growth and attrition in a stirred tank, Comput. Vis. Sci. 9(3) (2006) 175-183.[6] R. Lakerveld, J.J.H. Krochten, H.J.M. Kramer, An air-lift crystallizer can suppress secondary nucleation at a higher supersaturation compared to a stirred crystallizer, Cryst. Growth Des. 14(7) (2014) 3264-3275.[7] Q.S. Huang, C. Yang, G.Z. Yu, Z.-S. Mao, 3-D simulations of an internal airlift loop reactor using a steady two-fluid model, Chem. Eng. Technol. 30(7) (2007) 870-879.[8] M. Simclk, A. Mota, M.C. Ruzicka, A. Vicente, J. Teixeira, CFD simulation and experimental measurement of gas holdup and liquid interstitial velocity in internal loop airlift reactor, Chem. Eng. Sci. 66(14) (2011) 3268-3279.[9] J. Bao, K. Koumatsu, K. Furumoto, M. Yoshimoto, K. Fukunaga, K. Nakao, Optimal operation of an integrated bioreaction-crystallization process for continuous production of calcium gluconate using external loop airlift columns, Chem. Eng. Sci. 56(2001) 6165-6170.[10] S. Rigopoulos, A. Jones, Modeling of semibatch agglomerative gas-liquid precipitation of CaCO3 in a bubble column reactor, Ind. Eng. Chem. Res. 42(2003) 6567-6575.[11] D.H. Jenkins, Salting-out crystallisation using NH3 in a laboratory-scale gas lift reactor, Can. J. Chem. Eng. 87(6) (2009) 869-878.[12] P. Gonzalez-Contreras, J. Weijma, C.J.N. Buisman, Bioscorodite crystallization in an airlift reactor for arsenic removal, Cryst. Growth Des. 12(5) (2012) 2699-2706.[13] A. Soare, R. Lakerveld, J. Royen, G. Zocchi, A.I. Stankiewicz, H.J.M. Kramer, Minimization of attrition and breakage in an airlift crystallizer, Ind. Eng. Chem. Res. 51(33) (2012) 10895-10909.[14] Y. Wang, Q.S. Zhu, H.G. Zhang, Fabrication of β-Ni(OH)2 and NiO hollow spheres by a facile template-free process, Chem. Commun. (2005) 5231-5233.[15] D.B. Kuang, B.X. Lei, Y.P. Pan, X.Y. Yu, C.Y. Su, Fabrication of novel hierarchical β-Ni(OH)2 and NiO microspheres via an easy hydrothermal process, J. Phys. Chem. C 113(2009) 5508-5513.[16] X.J. Han, P. Xu, C.Q. Xu, L. Zhao, Z.B. Mo, T. Liu, Study of the effects of nanometer β-Ni(OH)2 in nickel hydroxide electrodes, Electrochim. Acta 50(14) (2005) 2763-2769.[17] J.X. Ren, Z. Zhou, X.P. Gao, J. Yan, Preparation of porous spherical α-Ni(OH)2 and enhancement of high-temperature electrochemical performances through yttrium addition, Electrochim. Acta 52(3) (2006) 1120-1126.[18] E. Shangguan, Z.R. Chang, H.W. Tang, X.-Z. Yuan, H.J. Wang, Synthesis and characterization of high-density non-spherical Ni(OH)2 cathode material for Ni-MH batteries, Int. J. Hydrog. Energy 35(18) (2010) 9716-9724.[19] M. Aghazadeh, A.N. Golikand, M. Ghaemi, Synthesis, characterization, and electrochemical properties of ultrafine β-Ni(OH)2 nanoparticles, Int. J. Hydrog. Energy 36(14) (2011) 8674-8679.[20] E. Shangguan, Z.R. Chang, H.W. Tang, X.-Z. Yuan, H.J. Wang, Comparative structural and electrochemical study of high density spherical and non-spherical Ni(OH)2 as cathode materials for Ni-metal hydride batteries, J. Power Sources 196(18) (2011) 7797-7805.[21] S. Presto, D. Giraud, A. Testino, C. Bottino, M. Viviani, V. Buscaglia, Growth of polycrystalline nickel hydroxide films from aqueous solution, solution chemistry, deposition methods, film morphology and texture, Thin Solid Films 552(2014) 1-9.[22] W.W. E, J.C. Cheng, C. Yang, Z.-S. Mao, Experimental study by online measurement of the precipitation of nickel hydroxide:effects of operating conditions, Chin. J. Chem. Eng. 23(5) (2015) 860-867.[23] M.X. Peng, X.Q. Shen, Template growth mechanism of spherical Ni(OH)2, J. Cent. S. Univ. Technol. 14(2007) 310-314.[24] K. Borho, The importance of population dynamics from the perspective of the chemical process industry, Chem. Eng. Sci. 57(2002) 4257-4266.[25] X.Q. Shen, M.X. Peng, M.X. Jing, Y.H. Wei, Study on structural characteristics of spherical Ni(OH)2 electrode active material, J. Funct. Mater. 36(11) (2005) 1798-1801(1805).[26] Y.Q. Cai, Research on Spherical Ni(OH)2 Production Using a Oscillatory Baffled Crystallizer Master Thesis Zhejiang Univ., Hangzhou, China, 2012.[27] T. Kikuoka, K. Watanabe, Physical and electrochemical characteristics of nickel hydroxide as a positive material for rechargeable alkaline batteries, J. Appl. Electrochem. 25(1995) 219-226.[28] M.X. Peng, Formation Mechanism of the Microstructures and the Electrochemical Performance for Spherical Nickel Hydroxide Ph. D. Thesis Central South Univ., Changsha, China, 2004.[29] H. Xia, M. Zinke-Allmang, Rate equation approach to the late stages of cluster ripening, Physica A 261(1998) 176-187.[30] W.P. Zhang, Investigation of Macro-and Micro-mixing in Multiphase Loop Reactors Ph. D. Thesis, The University of Chinese Academy of Sciences, Beijing, China, 2013.[31] C. Sist, Precipitation of Nickel Hydroxide from Sulphate Solutions Using Supersaturation Control Ph. D. Thesis McGill University, Montreal, Canada, 2004. |