[1] A.J. Salgado, O.P. Coutinho, R.L. Reis, Bone tissue engineering:State of the art and future trends, Macromol. Biosci. 4(2004) 743-765.
[2] R. Langer, J. Vacanti, Tissue engineering, Science 260(1993) 920-926.
[3] N. Harada, Y. Watanabe, K. Sato, S. Abe, K. Yamanaka, Y. Sakai, T. Kaneko, T. Matsushita, Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold, Biomaterials 35(2014) 7800-7810.
[4] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 26(2005) 5474-5491.
[5] A. Salerno, S. Zeppetelli, E. Di Maio, S. Iannace, P.A. Netti, Processing/structure/property relationship of multi-scaled PCL and PCL-HA composite scaffolds prepared via gas foaming and NaCl reverse templating, Biotechnol. Bioeng. 108(2011) 963-976.
[6] H.Y. Mi, X. Jing, L.S. Turng, Fabrication of porous synthetic polymer scaffolds for tissue engineering, J. Cell. Plast. 51(2014) 165-196.
[7] R.A. Quirk, R.M. France, K.M. Shakesheff, S.M. Howdle, Supercritical fluid technologies and tissue engineering scaffolds, Curr. Opin. Solid State Mater. Sci. 8(2004) 313-321.
[8] D.J. Mooney, D.F. Baldwin, N.P. Suh, L.P. Vacanti, R. Langer, Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents, Biomaterials 17(1996) 1417-1422.
[9] A. Salerno, S. Zeppetelli, E. Di Maio, S. Iannace, P.A. Netti, Architecture and properties of bi-modal porous scaffolds for bone regeneration prepared via supercritical CO2 foaming and porogen leaching combined process, J. Supercrit. Fluids 67(2012) 114-122.
[10] L.D. Harris, B.S. Kim, D.J. Mooney, Open pore biodegradable matrices formed with gas foaming, J. Biomed. Mater. Res. 42(1998) 396-402.
[11] A. Salerno, S. Iannace, P.A. Netti, Graded biomimetic osteochondral scaffold prepared via CO2 foaming and micronized NaCl leaching, Mater. Lett. 82(2012) 137-140.
[12] X. Xin, Q.Q. Liu, C.X. Chen, Y.X. Guan, S.J. Yao, Fabrication of bimodal porous PLGA scaffolds by supercritical CO2 foaming/particle leaching technique, J. Appl. Polym. Sci. 33(2016) 43644.
[13] J. Colton, N. Suh, The nucleation of microcellular thermoplastic foam with additives. Part I:Theoretical considerations, Polym. Eng. Sci. 27(1987) 485-492.
[14] J. Colton, N. Suh, The nucleation of microcellular thermoplastic foam with additives. Part Ⅱ:Experimental results and discussion, Polym. Eng. Sci. 27(1987) 493-499.
[15] J. Colton, N. Suh, Nucleation of microcellular foam theory and practice, Polym. Eng. Sci. 27(1987) 500-503.
[16] I. Tsivintzelis, E. Pavlidou, C. Panayiotou, Biodegradable polymer foams prepared with supercritical CO2-ethanol mixtures as blowing agents, J. Supercrit. Fluids 42(2007) 265-272.
[17] L.M. Mathieu, T.L. Mueller, P.E. Bourban, D.P. Pioletti, R. Muller, J.A. Manson, Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering, Biomaterials 27(2006) 905-916.
[18] L. Mathieu, P. Bourban, J. Manson, Processing of homogeneous ceramic/polymer blends for bioresorbable composites, Compos. Sci. Technol. 66(2006) 1606-1614.
[19] M.Salarian,W.Z. Xu, Z.Wang,T.K.Sham, P.A. Charpentier, Hydroxyapatite-TiO2-based nanocompositessynthesized in supercriticalCO2forbonetissueengineering:Physical and mechanical properties, ACS Appl. Mater. Interfaces 6(2014) 16918-16931.
[20] A.M. Ng, K.K. Tan, M.Y. Phang, O. Aziyati, G.H. Tan, M.R. Isa, B.S. Aminuddin, M. Naseem, O. Fauziah, B.H. Ruszymah, Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone, J. Biomed. Mater. Res. A 85(2008) 301-312.
[21] M. Bhamidipati, A.M. Scurto, M.S. Detamore, The future of carbon dioxide for polymer processing in tissue engineering, Tissue Eng. Part B Rev. 19(2013) 221-232.
[22] L.M. Mathieu, M.O. Montjovent, P.E. Bourban, D.P. Pioletti, J.A. Manson, Bioresorbable composites prepared by supercritical fluid foaming, J. Biomed. Mater. Res. A 75(2005) 89-97.
[23] G.P. Chen, T. Ushida, T. Tateishi, A biodegradable hybrid sponge nested with collagen microsponges, J. Biomed. Mater. Res. 51(2000) 273-279.
[24] N.S. Ramesh, Don H. Rasmussen, G.A. Campbell, The heterogeneous nucleation of microcellular foams assisted by the survival of microvoids in polymers containing low glass transition particles. Part I:Mathematical modeling and numerical simulation, Polym. Eng. Sci. 34(1994) 1685-1697.
[25] N.S. Ramesh, Don H. Rasmussen, G.A. Campbell, The heterogeneous nucleation of microcellular foams assisted by the survival of microvoids in polymers containing low glass transition particles. Part Ⅱ:Experimental results and discussion, Polym. Eng. Sci. 34(1994) 1698-1706.
[26] I. Tsivintzelis, A.G. Angelopoulou, C. Panayiotou, Foaming of polymers with supercritical CO2:An experimental and theoretical study, Polymer 48(2007) 5928-5939.
[27] E. Reverchon, S. Cardea, Supercritical fluids in 3-D tissue engineering, J. Supercrit. Fluids 69(2012) 97-107.
[28] H.Y. Tai, M.L. Mather, D. Howard, W.X. Wang, L.J. White, J.A. Crowe, S.P. Morgan, A. Chandra, D.J. Williams, S.M. Howdle, K.M. Shakesheff, Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing, Eur. Cells Mater. 14(2007) 64-77.
[29] J.J. Barry, H.S. Gidda, C.A. Scotchford, S.M. Howdle, Porous methacrylate scaffolds:Supercritical fluid fabrication and in vitro chondrocyte responses, Biomaterials 25(2004) 3559-3568.
[30] C. Marrazzo, E. Di Maio, S. Iannace, Conventional and nanometric nucleating agents in poly(ε-caprolactone) foaming:Crystals vs. bubbles nucleation, Polym. Eng. Sci. 48(2008) 336-344.
[31] S.J. Hollister, Porous scaffold design for tissue engineering, Nat. Mater. 4(2005) 518-524. |