[1] X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8(2009) 76-80.[2] Y. Wang, X.C. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst:From photochemistry to multipurpose catalysis to sustainable chemistry, Angew. Chem. Int. Ed. 51(2012) 68-89.[3] X.Q. Fan, L.X. Zhang, R.L. Cheng, M. Wang, M.L. Li, Y.J. Zhou, J.L. Shi, Construction of graphitic C3N4-based intramolecular donor-acceptor conjugated copolymers for photocatalytic hydrogen evolution, ACS Catal. 5(2015) 5008-5015.[4] Q. Han, B. Wang, Y. Zhao, C.G. Hu, L.T. Qu, A graphitic-C3N4"seaweed" architecture for enhanced hydrogen evolution, Angew. Chem. Int. Ed. 54(2015) 11433-11437.[5] F. He, G. Chen, Y.S. Zhou, Y.G. Yu, Y. Zheng, S. Hao, The facile synthesis of mesoporous g-C3N4 with highly enhanced photocatalytic H2 evolution performance, Chem. Commun. 51(2015) 16244-16246.[6] X.Y. Yuan, C. Zhou, Y.R. Jin, Q.Y. Jing, Y.L. Yang, X. Shen, Q. Tang, Y.H. Mu, A.K. Du, Facile synthesis of 3D porous thermally exfoliated g-C3N4 nanosheet with enhanced photocatalytic degradation of organic dye, J. Colloid Interf. Sci. 468(2016) 211-219.[7] Y.Z. Yu, J.G. Wang, Direct microwave synthesis of graphitic C3N4 with improved visible-light photocatalytic activity, Ceram. Int. 42(2016) 4063-4071.[8] M. Zhang, W.J. Jiang, D. Liu, J. Wang, Y.F. Liu, Y.Y. Zhu, Y.F. Zhu, Photodegradation of phenol via C3N4-agar hybrid hydrogel 3D photocatalysts with free separation, Appl. Catal. B-Environ. 183(2016) 263-268.[9] X.L. Yang, F.F. Qian, G.J. Zou, M.L. Li, J.R. Lu, Y.M. Li, M.T. Bao, Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation, Appl. Catal. B-Environ. 193(2016) 22-35.[10] Y.J. Cui, Y.B. Tang, X.C. Wang, Template-free synthesis of graphitic carbon nitride hollow spheres for photocatalytic degradation of organic pollutants, Mater. Lett. 161(2015) 197-200.[11] P.F. Xia, B.C. Zhu, J.G. Yu, S.W. Cao, M. Jaroniec, Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction, J. Mater. Chem. A 5(2017) 3230-3238.[12] G.H. Dong, W.K. Ho, Y.H. Li, L.Z. Zhang, Facile synthesis of porous graphene-like carbon nitride (C6N9H3) with excellent photocatalytic activity for NO removal, Appl. Catal. B-Environ. 174(2015) 477-485.[13] F. Dong, Y.H. Li, Z.Y. Wang, W.K. Ho, Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation, Appl. Surf. Sci. 358(2015) 393-403.[14] W.K. Ho, Z.Z. Zhang, M.K. Xu, X.W. Zhang, X.X. Wang, Y. Huang, Enhanced visiblelight-driven photocatalytic removal of NO:Effect on layer distortion on g-C3N4 by H2 heating, Appl. Catal. B-Environ. 179(2015) 106-112.[15] X.F. Chen, J.S. Zhang, X.Z. Fu, M. Antonietti, X.C. Wang, Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light, J. Am. Chem. Soc. 131(2009) 11658-11659.[16] L. Ge, C.C. Han, X.L. Xiao, L.L. Guo, Y.J. Li, Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C3N4 photocatalysts, Mater. Res. Bull. 48(2013) 3919-3925.[17] K. Wang, Q. Li, B.S. Liu, B. Cheng, W.K. Ho, J.G. Yu, Sulfur-doped g-C3N4 with enhanced photocatalytic CO2 reduction performance, Appl. Catal. B-Environ. 176(2015) 44-52.[18] J.W. Fu, B.C. Zhu, C.J. Jiang, B. Cheng, Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity, Small 13(2017), 1603938. (9 pages).[19] X.J She, J.J. Wu, J. Zhong, H. Xu, Y.C. Yang, R. Vajtai, J. Lou, Y. Liu, D.L. Du, H.M. Li, P.M. Ajayan, Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency, Nano Energy 27(2016) 138-146.[20] Z.F. Huang, J.J. Song, L. Pan, Z.M. Wang, X.Q. Zhang, J.J. Zou, W.B. Mi, X.W. Zhang, L. Wang, Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution, Nano Energy 12(2015) 646-656.[21] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation, Langmuir 26(2010) 3894-3901.[22] J. Liu, Y. Liu, N.Y. Liu, Y.Z. Han, X. Zhang, H. Huang, Y. Lifshitz, S.T. Lee, J. Zhong, Z.H. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a twoelectron pathway, Science 347(2015) 970-974.[23] Y.P. Zhu, T.Z. Ren, Z.Y. Yuana, Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance, ACS Appl. Mater. Inter. 7(2015) 16850-16856.[24] J.R. Ran, T.Y. Ma, G.P. Gao, X.W. Du, S.Z. Qiao, Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production, Energy Environ. Sci. 8(2015) 3708-3717.[25] Z.A. Lan, G.G. Zhang, X.C. Wang, A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting, Appl. Catal. B-Environ. 192(2016) 116-125.[26] Y. Shiraishi, Y. Kofuji, S. Kanazawa, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient cocatalysts for photocatalytic hydrogen evolution under visible light, Chem. Commun. 50(2014) 15255-15258.[27] S. Samanta, S. Martha, K. Parida, Facile synthesis of Au/g-C3N4 nanocomposites:An inorganic/organic hybrid plasmonic photocatalyst with enhanced hydrogen gas evolution under visible-light irradiation, ChemCatChem 6(2014) 1453-1462.[28] Y.S. Fu, T. Huang, L.L. Zhang, J.W. Zhu, X. Wang, Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes:A borohydride-generated superoxide radical approach, Nanoscale 7(2015) 13723-13733.[29] F. Dong, Z.W. Zhao, Y.J. Sun, Y.X. Zhang, S. Yan, Z.B. Wu, An advanced semimetal-organic Bi spheres-g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification, Environ. Sci. Technol. 49(2015) 12432-12440.[30] Z.W. Zhao, Y.J. Sun, F. Dong, Graphitic carbon nitride based nanocomposites:A review, Nanoscale 7(2015) 15-37.[31] G. Mamba, A.K. Mishra, Graphitic carbon nitride (g-C3N4) nanocomposites:A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation, Appl. Catal. B-Environ. 198(2016) 347-377.[32] J.L. Zhang, Z. Ma, Novel β-Ag2MoO4/g-C3N4 heterojunction catalysts with highly enhanced visible-light-driven photocatalytic activity, RSC Adv. 7(2017) 2163-2171.[33] J.L. Zhang, Z. Ma, Ag6Mo10O33/g-C3N4 1D-2D hybridized heterojunction as an efficient visible-light-driven photocatalyst, Mol. Catal. 432(2017) 285-291.[34] M. Groenewolt, M. Antonietti, Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices, Adv. Mater. 17(2005) 1789-1792.[35] X. Jin, V.V. Balasubramanian, S.T. Selvan, D.P. Sawant, M.A. Chari, G.Q. Lu, A. Vinu, Highly ordered mesoporous carbon nitride nanoparticles with high nitrogen content:A metal-free basic catalyst, Angew. Chem. Int. Ed. 48(2009) 7884-7887.[36] P. Niu, L.L. Zhang, G. Liu, H.M. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater. 22(2012) 4763-4770.[37] S.B. Yang, Y.J. Gong, J.S. Zhang, L. Zhan, L.L. Ma, Z.Y. Fang, R. Vajtai, X.C. Wang, P.M. Ajayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light, Adv. Mater. 25(2013) 2452-2456.[38] X.J. Bai, L. Wang, R.L. Zong, Y.F. Zhu, Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods, J. Phys. Chem. C 117(2013) 9952-9961.[39] Y. Zhao, F. Zhao, X.P. Wang, C.Y. Xu, Z.P. Zhang, G.Q. Shi, L.T. Qu, Graphitic carbon nitride nanoribbons:Graphene-assisted formation and synergic function for highly efficient hydrogen evolution, Angew. Chem. Int. Ed. 53(2014) 13934-13939.[40] Y.S. Jun, E.Z. Lee, X.C. Wang, W.H. Hong, G.D. Stucky, A. Thomas, From melaminecyanuric acid supramolecular aggregates to carbon nitride hollow spheres, Adv. Funct. Mater. 23(2013) 3661-3667.[41] D.D. Zheng, C.J. Huang, X.C. Wang, Post-annealing reinforced hollow carbon nitride nanospheres for hydrogen photosynthesis, Nanoscale 7(2015) 465-470.[42] Q. Han, B. Wang, J. Gao, Z.H. Cheng, Y. Zhao, Z.P. Zhang, L.T. Qu, Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution, ACS Nano 10(2016) 2745-2751.[43] S.N. Guo, Y. Zhu, Y.Y. Yan, Y.L. Min, J.C. Fan, Q.J. Xu, Holey structured graphitic carbon nitride thin sheets with edge oxygen doping via photo-Fenton reaction with enhanced photocatalytic activity, Appl. Catal. B-Environ. 185(2016) 315-321.[44] Q.H. Liang, Z. Li, X.L. Yu, Z.H. Huang, F.Y. Kang, Q.H. Yang, Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution, Adv. Mater. 27(2015) 4634-4639.[45] L.Q. Yang, J.F. Huang, L. Shi, L.Y. Cao, Q. Yu, Y.N. Jie, J. Fei, H.B. Ouyang, J.H. Ye, A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production, Appl. Catal. B-Environ. 204(2017) 335-345.[46] S.W. Cao, J.X. Low, J.G. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride, Adv. Mater. 27(2015) 2150-2176.[47] J.L. Zhang, H. Liu, Z. Ma, Flower-like Ag2O/Bi2MoO6 p-n heterojunction with enhanced photocatalytic activity under visible light irradiation, J. Mol. Catal. A Chem. 424(2016) 37-44.[48] J.L. Zhang, Z. Ma, Flower-like Ag2MoO4/Bi2MoO6 heterojunctions with enhanced photocatalytic activity under visible light irradiation, J. Taiwan Inst. Chem. Eng. 71(2017) 156-164.[49] J.L. Zhang, Z. Ma, Flower-like Ag3VO4/BiOBr n-p heterojunction photocatalysts with enhanced visible-light-driven catalytic activity, Mol. Catal. 436(2017) 190-198.[50] J.L. Zhang, Z. Ma, Enhanced visible-light photocatalytic performance of Ag3VO4/Bi2WO6 heterojunctions in removing aqueous dyes and tetracycline hydrochloride, J. Taiwan Inst. Chem. Eng. 78(2017) 212-218.[51] J.H. Li, B. Shen, Z.H. Hong, B.Z. Lin, B.F. Gao, Y.L. Chen, A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity, Chem. Commun. 48(2012) 12017-12019.[52] L. Shi, K. Chang, H.B. Zhang, X. Hai, L.Q. Yang, T. Wang, J.H. Ye, Drastic enhancement of photocatalytic activities over phosphoric acid protonated porous g-C3N4 nanosheets under visible light, Small 12(2016) 4431-4439.[53] P. Qiu, H. Chen, C. Xu, N. Zhou, F. Jiang, X. Wang, Y. Fu, Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst, J. Mater. Chem. A 3(2015) 24237-24244.[54] W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation:Are we a step closer to achieving sustainability? Chem. Rev. 116(2016) 7159-7329.[55] J.L. Zhang, L.S. Zhang, N. Yu, K.B. Xu, S.J. Li, H.L. Wang, J.S. Liu, Flower-like Bi2S3/Bi2MoO6 heterojunction superstructures with enhanced visible-light-driven photocatalytic activity, RSC Adv. 5(2015) 75081-75088.[56] J.L. Zhang, L.S. Zhang, X.F. Shen, P.F. Xu, J.S. Liu, Synthesis of BiOBr/WO3 p-n heterojunctions with enhanced visible light photocatalytic activity, CrystEngComm 18(2016) 3856-3865.[57] M. Yan, Y.L. Wu, F.F. Zhu, Y.Q. Hua, W.D. Shi, The fabrication of a novel Ag3VO4/WO3 heterojunction with enhanced visible light efficiency in the photocatalytic degradation of TC, Phys. Chem. Chem. Phys. 18(2016) 3308-3315.[58] L.F. Yue, S.F. Wang, G.Q. Shan, W. Wu, L.W. Qiang, L.Y. Zhu, Novel MWNTs-Bi2WO6 composites with enhanced simulated solar photoactivity toward adsorbed and free tetracycline in water, Appl. Catal. B-Environ. 176(2015) 11-19.[59] M.L. Li, L.X. Zhang, X.Q. Fan, Y.J. Zhou, M.Y. Wu, J.L. Shi, Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light, J. Mater. Chem. A 3(2015) 5189-5196.[60] S.S. Yi, J.M. Yan, B.R. Wulan, S.J. Li, K.H. Liu, Q. Jiang, Noble-metal-free cobalt phosphide modified carbon nitride:An efficient photocatalyst for hydrogen generation, Appl. Catal. B-Environ. 200(2017) 477-483.[61] T.T. Zhu, L.Y. Huang, Y.H. Song, Z.G. Chen, H.Y. Ji, Y.P. Li, Y.G. Xu, Q. Zhang, H. Xu, H.M. Li, Modification of Ag3VO4 with graphene-like MoS2 for enhanced visible-light photocatalytic property and stability, New J. Chem. 40(2016) 2168-2177.[62] Y.F. Li, R.X. Jin, X. Fang, Y. Yang, M. Yang, X.C. Liu, Y. Xing, S.Y. Song, In situ loading of Ag2WO4 on ultrathin g-C3N4 nanosheets with highly enhanced photocatalytic performance, J. Hazard. Mater. 313(2016) 219-228. |