[1] M. Alesso, G. Bondioli, M.C. Talio, et al., Micelles mediated separation fluorimetric methodology for Rhodamine B determination in condiments, snacks and candies, Food Chem. 134(1) (2012) 513-517.[2] M. Faria, A. Navarro, T. Luckenbach, et al., Characterization of the multixenobiotic resistance (MXR) mechanism in embryos and larvae of the zebra mussel (Dreissena polymorpha) and studies on its role in tolerance to single and mixture combinations of toxicants, Aquat. Toxicol. 101(1) (2011) 78-87.[3] R.C. Gott, Y.C. Luo, Q. Wang, et al., Development of a biopolymer nanoparticle-based method of oral toxicity testing in aquatic invertebrates, Ecotoxicol. Environ. Saf. 104(2014) 226-230.[4] E.R. Vehniainen, Jussi V.K. Kukkonen, Multixenobiotic resistance efflux activity in Daphnia magna and Lumbriculus variegatus, Chemosphere 124(2015) 143-149.[5] Z.W. Chen, X.Y. Jiang, C.B. Zhu, et al., Chromium-modified Bi4Ti3O12 photocatalyst:Application for hydrogen evolution and pollutant degradation, Appl. Catal. B Environ. 199(2016) 241-251.[6] H.J. Cheng, J.G. Hou, O. Taketa, et al., A unique Z-scheme 2D/2D nanosheet heterojunction design to harness charge transfer for photocatalysis, J. Mater. Chem. A 3(20) (2015) 11006-11013.[7] R.R. Hao, G.H. Wang, C.J. Jiang, et al., In situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for Rhodamine B degradation, Appl. Surf. Sci. 411(2017) 400-410.[8] Y. Nan, D. Yang, Z.W. Tong, et al., Fabrication of nanoplate-like g-C3N4/Bi12TiO20 heterojunction with enhanced visible-light photocatalytic activity, Mater. Res. Bull. 93(2017) 91-101.[9] D.D. Tang, G.K. Zhang, Ultrasonic-assistant fabrication of cocoon-like Ag/AgFeO2 nanocatalyst with excellent plasmon enhanced visible-light photocatalytic activity, Ultrason. Sonochem. 37(2017) 208-215.[10] Z.W. Chen, J. Hong, W.L. Jin, et al., Enhanced photocatalytic performance over Bi4Ti3O12 nanosheets with controllable size and exposed {001} facets for Rhodamine B degradation, Appl. Catal. B Environ. 180(2016) 698-706.[11] J. Li, X.Y. Wu, W.F. Pan, et al., Vacancy-rich monolayer BiO2x as a highly efficient UV, visible, and near-infrared responsive photocatalyst, Angew. Chem. Int. Ed. 57(2) (2018) 491-495.[12] J. Liu, G.K. Zhang, Recent advances in synthesis and applications of clay-based photocatalysts:A review, Phys. Chem. Chem. Phys. 16(18) (2014) 8178-8192.[13] R.Y. Xie, L.P. Zhang, X. Hong, et al., Fabrication of Z-scheme photocatalyst Ag-AgBr@Bi20TiO32 and its visible-light photocatalytic activity for the degradation of isoproturon herbicide, J. Mol. Catal. A Chem. 406(2015) 194-203.[14] Y.W. Zhao, H.Q. Fan, K. Fu, et al., Intrinsic electric field assisted polymeric graphitic carbon nitride coupled with Bi4Ti3O12/Bi2Ti2O7 heterostructure nanofibers toward enhanced photocatalytic hydrogen evolution, Int. J. Hydrog. Energy 41(38) (2016) 16913-16926.[15] W. Wei, Y. Dai, B.B. Huang, et al., First-principles characterization of Bi-based photocatalysts:Bi12TiO20, Bi2Ti2O7, and Bi4Ti3O12, J. Phys. Chem. C 113(14) (2009) 5658-5663.[16] W.F. Yao, H. Wang, X.H. Xu, et al., Synthesis and photocatalytic property of bismuth titanate Bi4Ti3O12, Mater. Lett. 57(13-14) (2003) 1899-1902.[17] D.F. Hou, W. Luo, Y.H. Huang, et al., Synthesis of porous Bi4Ti3O12 nanofibers by electrospinning and their enhanced visible-light-driven photocatalytic properties, Nano 5(5) (2013) 2028-2035.[18] Y.C. Deng, L. Tang, G.M. Zeng, et al., Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media:Performance and reaction mechanism, Appl. Catal. B Environ. 203(2017) 343-554.[19] S. Fuentes, P. Munoz, J. Llanos, et al., Synthesis and optical characterization of Er-doped bismuth titanate nanoparticles grown by sol-gel hydrothermal method, Ceram. Int. 43(4) (2017) 3623-3630.[20] D. Gu, Y.Y. Qin, Y.C. Wen, et al., Electronic structure and optical properties of V-doped Bi4Ti3O12 nanoparticles, J. Alloys Compd. 695(2017) 2224-2231.[21] C. Du, D.H. Li, Q.Y. He, et al., Design and simple synthesis of composite Bi12TiO20/Bi4Ti3O12 with a good photocatalytic quantum efficiency and high production of photo-generated hydroxyl radicals, Phys. Chem. Chem. Phys. 18(38) (2016) 26530-26538.[22] Y. Liu, M.Y. Zhang, L. Li, et al., One-dimensional visible-light-driven bifunctional photocatalysts based on Bi4Ti3O12 nanofiber frameworks and Bi2XO6(X=Mo, W) nanosheets, Appl. Catal. B Environ. 160(2014) 757-766.[23] L.B. Jiang, X.Z. Yuan, Y. Pan, et al., Doping of graphitic carbon nitride for photocatalysis:A review, Appl. Catal. B Environ. 217(2017) 388-406.[24] A.E. Nogueira, Alan R. Lima, Elson Longo, et al., Effect of lanthanum and lead doping on the microstructure and visible light photocatalysis of bismuth titanate prepared by the oxidant peroxide method (OPM), J. Photochem. Photobiol. A Chem. 312(2015) 55-63.[25] F. Goettmann, F. Anna, A. Markus, et al., Metal-free catalysis of sustainable Friedel-Crafts reactions:Direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds, Chem. Commun. 34(43) (2006) 4530-4532.[26] J. Luo, X.S. Zhou, L. Ma, et al., Rational construction of Z-scheme Ag2CrO4/g-C3N4 composites with enhanced visible-light photocatalytic activity, Appl. Surf. Sci. 390(2016) 357-367.[27] D.M. Teter, R.J. Hemley, Low-compressibility carbon nitrides, Science 271(5245) (1996) 53-55.[28] Z.M. Cui, H. Yang, X.X. Zhao, Enhanced photocatalytic performance of g-C3N4/Bi3Ti3O12 heterojunction nanocomposites, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 229(2018) 160-172.[29] A.W. Wang, C.D. Wang, L. Fu, et al., Recent advances of graphitic carbon nitridebased structures and applications in catalyst, sensing, imaging, and LEDs, NanoMicro Lett. 9(4) (2017) 47-69.[30] H.Q. He, J. Yin, Y.X. Li, et al., Size controllable synthesis of single-crystal ferroelectric Bi4Ti3O12 nanosheet dominated with {001} facets toward enhanced visible-lightdriven photocatalytic activities, Appl. Catal. B Environ. 156(2014) 35-43.[31] S. Kumar, B. Arabinda, T. Surendar, et al., Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core-shell nanoplates with excellent visiblelight responsive photocatalysis, Nano 6(9) (2014) 4830-4842.[32] S. Kumar, B. Kumar, T. Surendar, et al., g-C3N4/NaTaO3 organic-inorganic hybrid nanocomposite:High-performance and recyclable visible light driven photocatalyst, Mater. Res. Bull. 49(2014) 310-318.[33] F. Dong, L.W. Wu, Y.J. Sun, et al., Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts, J. Mater. Chem. 21(39) (2011) 15171-15174.[34] F. Dong, Z.L. Ni, P.D. Li, et al., A general method for type I and type Ⅱ g-C3N4/g-C3N4 metal-free isotype heterostructures with enhanced visible light photocatalysis, New J. Chem. 39(6) (2015) 4737-4744.[35] L.Q. Ye, J.Y. Liu, Z. Jiang, et al., Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity, Appl. Catal. B Environ. 142(2013) 1-7.[36] X.F. Yang, Z.P. Chen, J.S. Xu, et al., Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation, ACS Appl. Mater. Interfaces 7(28) (2015) 15285-15293.[37] S. Horikoshi, A. Saitou, H. Hidaka, et al., Environmental remediation by an integrated microwave/UV illumination method. V. Thermal and nonthermal effects of microwave radiation on the photocatalyst and on the photodegradation of rhodamine-b under UV/Vis radiation, Environ. Sci. Technol. 37(24) (2003) 5813-5822.[38] C.C. Chen, X.Z. Li, W.H. Ma, et al., Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation:A probe for the interfacial electron transfer process and reaction mechanism, J. Phys. Chem. B 106(2) (2002) 318-324.[39] Z.A. Huang, Q. Sun, K.L. Lv, et al., Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst:(001) vs (101) facets of TiO2, Appl. Catal. B Environ. 164(2015) 420-427.[40] Z.W. Tong, D. Yang, Y.Y. Sun, et al., Biomimetic synthesis of C3N4/TiO2/Ag nanosheet composites with high visible-light photocatalytic performance, RSC Adv. 5(70) (2015) 56913-56921.[41] D. Lu, G.K. Zhang, Z. Wan, et al., Visible-light-driven g-C3N4/Ti3+-TiO2 photocatalyst co-exposed {001} and {101} facets and its enhanced photocatalytic activities for organic pollutant degradation and Cr(VI) reduction, Appl. Surf. Sci. 358((2015) 223-230.[42] J.X. Wang, J. Huang, H.L. Xie, et al., Synthesis of g-C3N4/TiO2 with enhanced photocatalytic activity for H-2 evolution by a simple method, Int. J. Hydrog. Energy 39(12) (2014) 6354-6363.[43] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir 25(17) (2009) 10397-10401.[44] J. Fu, B.B. Chang, Y.L. Tian, et al., Novel C3N4-CdS composite photocatalysts with organic-inorganic heterojunctions:In situ synthesis, exceptional activity, high stability and photocatalytic mechanism, J. Mater. Chem. A 1(9) (2013) 3083-3090.[45] H.S. Gu, P.Z. Chen, Y.H. Zhou, et al., Reactions in preparing Bi4Ti3O12 ultrafine powders by sol-gel process, Ferroelectrics 211(1-4) (1998) 271-280.[46] Y.M. Kan, X.H. Jin, G.J. Zhang, et al., Lanthanum modified bismuth titanate prepared by a hydrolysis method, J. Mater. Chem. 14(24) (2004) 3566-3570.[47] S.W. Cao, X.F. Liu, Y.P. Yu, et al., Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts, Appl. Catal. B Environ. 147(2014) 940-946.[48] H. Wang, B. Wang, Y.R. Bian, et al., Enhancing photocatalytic activity of graphitic carbon nitride by codoping with P and C for efficient hydrogen generation, ACS Appl. Mater. Interfaces 9(26) (2017) 21730-21737.[49] J.G. Yu, H.G. Yu, B. Cheng, et al., The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition, J. Phys. Chem. B 107(50) (2003) 13871-13879.[50] N. Bao, X.D. Hu, Q.Z. Zhang, et al., Synthesis of porous carbon-doped g-C3N4 nanosheets with enhanced visible-light photocatalytic activity, Appl. Surf. Sci. 403(2017) 682-690.[51] Y. Guo, J.H. Li, Z.Q. Gao, et al., A simple and effective method for fabricating novel p-n heterojunction photocatalyst g-C3N4/Bi4Ti3O12 and its photocatalytic performances, Appl. Catal. B Environ. 192(2016) 57-71.[52] Z. Wan, G.K. Zhang, X.Y. Wu, et al., Novel visible-light-driven Z-scheme Bi12GeO20/g-C3N4 photocatalyst:Oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of Cr(VI) reduction, Appl. Catal. B Environ. 207(2017) 17-26.[53] J.D. Xiao, Y.B. Xie, H.B. Cao, et al., g-C3N4-triggered super synergy between photocatalysis and ozonation attributed to promoted (OH)-O-center dot generation, Catal. Commun. 66(2015) 10-14.[56] J. Cao, X. Li, H.L. Lin, et al., In situ preparation of novel p-n junction photocatalyst BiOI/(BiO)2CO3 with enhanced visible light photocatalytic activity, J. Hazard. Mater. 239(2012) 316-324.[58] W. Zhao, Z.B. Wei, H. He, et al., Supporting 1-D AgVO3 nanoribbons on single layer 2-D graphitic carbon nitride ultrathin nanosheets and their excellent photocatalytic activities, Appl. Catal. A Gen. 501(2015) 74-82.[59] Y.M. He, L.H. Zhang, X.X. Wang, et al., Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3-g-C3N4 composite under visible light irradiation, RSC Adv. 4(26) (2014) 13610-13619.[60] P.X. Qiu, C.M. Xu, H. Chen, et al., One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity:Role of oxygen on visible light photocatalytic activity, Appl. Catal. B Environ. 206(2017) 319-327. |