中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (3): 649-659.DOI: 10.1016/j.cjche.2018.06.010
• Biotechnology and Bioengineering • 上一篇 下一篇
Chenghui Zheng1,2, Jiashun Guo1, Chengkai Wang1, Yuanfeng Chen2, Huidong Zheng1, Zuoyi Yan1, Qinggen Chen3
收稿日期:
2018-03-23
修回日期:
2018-05-25
出版日期:
2019-03-28
发布日期:
2019-04-25
通讯作者:
Huidong Zheng,E-mail address:youngman@fzu.edu.cn
基金资助:
Supported by the National Natural Science Foundation of China (21476049,21506033) and Department of Science and Technology of Fujian Province,China (2014R1004-3,2015J01052,2016H4023 and FG-2016005).
Chenghui Zheng1,2, Jiashun Guo1, Chengkai Wang1, Yuanfeng Chen2, Huidong Zheng1, Zuoyi Yan1, Qinggen Chen3
Received:
2018-03-23
Revised:
2018-05-25
Online:
2019-03-28
Published:
2019-04-25
Contact:
Huidong Zheng,E-mail address:youngman@fzu.edu.cn
Supported by:
Supported by the National Natural Science Foundation of China (21476049,21506033) and Department of Science and Technology of Fujian Province,China (2014R1004-3,2015J01052,2016H4023 and FG-2016005).
摘要: In order to obtain the reasonable operating conditions and minimize the power consumption in the stirred bioreactor, the hydrodynamic experiments in the stirred bioreactor have been taken to obtain the basic data. Subsequently, an Eulerian model for the gas-liquid-solid three phase flow in the stirred bioreactor has been proposed and the CFD simulation has been conducted. By comparing the results of experiment and simulation, it can be concluded that the simulation results were consistent with the experimental data. The inner relationship between operating variables and indicators could be obtained by comparing the results of just suspension speed, gas holdup, power consumption and operational maps, further the reasonable operating conditions could be also determined under the minimum power consumption. The operational maps could provide the theoretical foundation for industrial application of the gas-liquid-solid stirred bioreactors under the low solid concentration (no more than 20 wt%).
Chenghui Zheng, Jiashun Guo, Chengkai Wang, Yuanfeng Chen, Huidong Zheng, Zuoyi Yan, Qinggen Chen. Experimental study and simulation of a three-phase flow stirred bioreactor[J]. 中国化学工程学报, 2019, 27(3): 649-659.
Chenghui Zheng, Jiashun Guo, Chengkai Wang, Yuanfeng Chen, Huidong Zheng, Zuoyi Yan, Qinggen Chen. Experimental study and simulation of a three-phase flow stirred bioreactor[J]. Chinese Journal of Chemical Engineering, 2019, 27(3): 649-659.
[1] | M. Davoody, A.A.B. Abdul Raman, R. Parthasarathy, Maximizing gas-liquid interfacial area in a three-phase stirred vessel operating at high solids concentrations, Chem. Eng. Process. Process Intensif. 104(6) (2016) 133-147. |
[2] | G.H. Sedahmed, Y.A. El-Taweel, M.H. Abdel-Aziz, et al., Mass and heat transfer enhancement at the wall of cylindrical agitated vessel by turbulence promoters, Chem. Eng. Process. Process Intensif. 80(4) (2014) 43-50. |
[3] | M.Y. Chisti, M. Moo-Young, Hydrodynamics and oxygen transfer in pneumatic bioreactor devices, Biotechnol. Bioeng. 31(5) (1988) 487-494. |
[4] | F. Scargiali, A. Busciglio, F. Grisafi, et al., Mass transfer and hydrodynamic characteristics of unbaffled stirred bio-reactors:Influence of impeller design, Biochem. Eng. J. 82(15) (2014) 41-47. |
[5] | J.B. Joshi, C.B. Elias, M.S. Patole, Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells, Chem. Eng. J. Biochem. Eng. J. 62(2) (1996) 121-141. |
[6] | J.P. Arnaud, C. Lacroix, L. Choplin, Effect of agitation rate on cell release rate and metabolism during continuous fermentation with entrapped growing, Biotechnol. Tech. 6(3) (1992) 265-270. |
[7] | J.P. Arnaud, C. Lacroix, C. Foussereau, et al., Shear stress effects on growth and activity of Lactobacillus delbrueckii subsp. bulgaricus, J. Biotechnol. 29(1) (1993) 157-175. |
[8] | N. Edwards, S. Beeton, A.T. Bull, et al., A novel device for the assessment of shear effects on suspended microbial cultures, Appl. Microbiol. Biotechnol. 30(2) (1989) 190-195. |
[9] | M. Cai, X. Zhou, J. Lu, et al., Enhancing aspergiolide A production from a shearsensitive and easy-foaming marine-derived filamentous fungus Aspergillus glaucus by oxygen carrier addition and impeller combination in a bioreactor, Bioresour. Technol. 102(3) (2011) 3584-3586. |
[10] | Y. Chisti, U.J. Jauregui-Haza, Oxygen transfer and mixing in mechanically agitated airlift bioreactors, Biochem. Eng. J. 10(2) (2002) 143-153. |
[11] | A. Karimi, F. Golbabaei, M.R. Mehrnia, et al., Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes, Iran. J. Environ. Health Sci. Eng. 10(6) (2013) 1-9. |
[12] | F. Scargiali, A. Busciglio, F. Grisafi, et al., Oxygen transfer performance of unbaffled stirred vessels in view of their use as biochemical reactors for animal cell growth, Chem. Eng. Trans. 27(1) (2012) 205-210. |
[13] | N.M. Atef, M.H. Abdel-Aziz, Y.O. Fouad, et al., Mass and heat transfer at an array of horizontal cylinders placed at the bottom of a square agitated vessel, Chem. Eng. Res. Des. 94(9) (2015) 449-455. |
[14] | G. Baldi, R. Conti, E. Alaria, Complete suspension of particles in mechanically agitated vessels, Chem. Eng. Sci. 33(1) (1978) 21-25. |
[15] | R. Angst, M. Kraume, Experimental investigations of stirred solid/liquid systems in three different scales:Particle distribution and power consumption, Chem. Eng. Sci. 61(9) (2006) 2864-2870. |
[16] | T.Y. See, A.A. Abdul Raman, R.S.S. Raja Ehsan Shah, et al., Study of sparger location on solid suspension in a triple-impeller stirred vessel, Asia Pac. J. Chem. Eng. 11(2) (2016) 229-236. |
[17] | M.M. Buffo, L.J. Correa, M.N. Esperanca, et al., Influence of dual-impeller type and configuration on oxygen transfer, power consumption, and shear rate in a stirred tank bioreactor, Biochem. Eng. J. 114(10) (2016) 130-139. |
[18] | C.H. Zheng, Y.J. Huang, J.S. Guo, et al., Investigation of cleaner sulfide mineral oxidation technology:Simulation and evaluation of stirred bioreactors for goldbioleaching process, J. Clean. Prod. 192(8) (2018) 364-375. |
[19] | Y. Sano, N. Yamaguchi, T. Adachi, Mass transfer coefficients for suspended particles in agitated vessels and bubble columns, J. Chem. Eng. Jpn. 7(4) (1974) 255-261. |
[20] | N. Dohi, T. Takahashi, K. Minekawa, et al., Power consumption and solid suspension performance of large-scale impellers in gas-liquid-solid three-phase stirred tank reactors, Chem. Eng. J. 97(2-3) (2004) 103-114. |
[21] | A. Satio, M. Kamiwano, Power consumption, gas dispersion and solid suspension in three phase mixing vessels, Proceedings of the Proc 6th European Conference on Mixing Pavia, Italy F, 1998, Springer, Pavia, Italy, 1998. |
[22] | H. Ameur, M. Bouzit, Power consumption for stirring shear thinning fluids by two-blade impeller, Energy 50(2) (2013) 326-332. |
[23] | Y. Chisti, Animal-cell damage in sparged bioreactors, Trends Biotechnol. 18(10) (2000) 420-432. |
[24] | T.N. Zwietering, Suspending of solid particles in liquid by agitators, Chem. Eng. Sci. 8(3) (1958) 244-253. |
[25] | L.-j. Zhang, T. Li, W.-y. Ying, et al., Rising and descending bubble size distributions in gas-liquid and gas-liquid-solid slurry bubble column reactor, Chem. Eng. Res. Des. 86(10) (2008) 1143-1154. |
[26] | L.j. Zhang, T. Li, W.y. Ying, et al., Experimental study on bubble rising and descending velocity distribution in a slurry bubble column reactor, Chem. Eng. Technol. 31(9) (2008) 1362-1368. |
[27] | B. Wang, T. Li, Q.W. Sun, et al., Experimental study on flow behavior in a gas-solid fluidized bed for the methanol-to-olefins process, Chem. Eng. Technol. 33(10) (2010) 1591-1600. |
[28] | S. Kim, X.Y. Fu, X. Wang, et al., Development of the miniaturized four-sensor conductivity probe and the signal processing scheme, Int. J. Heat Mass Transf. 43(22) (2000) 4101-4118. |
[29] | P. Riedlberger, D. Weuster-Botz, New miniature stirred-tank bioreactors for parallel study of enzymatic biomass hydrolysis, Bioresour. Technol. 106(Supplement C) (2012) 138-146. |
[30] | J. Ding, X. Wang, X.-F. Zhou, et al., CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production, Bioresour. Technol. 101(18) (2010) 7005-7013. |
[31] | A.R. Khopkar, J. Aubin, C. Xuereb, et al., Gas-liquid flow generated by a pitchedblade turbine:Particle image velocimetry measurements and computational fluid dynamics simulations, Ind. Eng. Chem. Res. 42(21) (2003) 5318-5332. |
[32] | C. Gentric, D. Mignon, J. Bousquet, et al., Comparison of mixing in two industrial gas-liquid reactors using CFD simulations, Chem. Eng. Sci. 60(8-9) (2005) 2253-2272. |
[33] | X. Wang, J. Ding, W.-Q. Guo, et al., A hydrodynamics-reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation, Bioresour. Technol. 101(24) (2010) 9749-9757. |
[34] | R. Panneerselvam, S. Savithri, G.D. Surender, CFD modeling of gas-liquid-solid mechanically agitated contactor, Chem. Eng. Res. Des. 86(12) (2008) 1331-1344. |
[35] | B.N. Murthy, R.S. Ghadge, J.B. Joshi, CFD simulations of gas-liquid-solid stirred reactor:Prediction of critical impeller speed for solid suspension, Chem. Eng. Sci. 62(24) (2007) 7184-7195. |
[36] | J.X. Xu, H. Wang, J.J. Wang, et al., CFD Simulation of Mixing Effects in Gas-Liquid-Solid Stirred Reactor, Proceedings of the Adv Mat Res, F, 2012. |
[37] | F. Wang, Z. Mao, Y. Wang, et al., Measurement of phase holdups in liquid-liquid-solid three-phase stirred tanks and CFD simulation, Chem. Eng. Sci. 61(22) (2006) 7535-7550. |
[38] | A. Inc., Ansys Fluent Theory Guide, ANSYS, Inc., Canonsburg, 2013. |
[39] | A.R. Khopkar, A.R. Rammohan, V.V. Ranade, et al., Gas-liquid flow generated by a Rushton turbine in stirred vessel:CARPT/CT measurements and CFD simulations, Chem. Eng. Sci. 60(8-9) (2005) 2215-2229. |
[40] | M. Ljungqvist, A. Rasmuson, Numerical simulation of the two-phase flow in an axially stirred vessel, Chem. Eng. Res. Des. 79(5) (2001) 533-546. |
[41] | R. Zadghaffari, J.S. Moghaddas, Evaluation of drag force effect on hold-up in a gas-liquid stirred tank reactor, J. Chem. Eng. Jpn. 43(10) (2010) 833-840. |
[42] | A.R. Khopkar, G.R. Kasat, A.B. Pandit, et al., CFD simulation of mixing in tall gas-liquid stirred vessel:Role of local flow patterns, Chem. Eng. Sci. 61(9) (2006) 2921-2929. |
[43] | G.L. Lane, M.P. Schwarz, G.M. Evans, Modelling of the interaction between gas and liquid in stirred vessels, 10th European Conference on Mixing, Elsevier Science, Amsterdam 2000, pp. 197-204. |
[44] | A. Brucato, F. Grisafi, G. Montante, Particle drag coefficients in turbulent fluids, Chem. Eng. Sci. 53(18) (1998) 3295-3314. |
[45] | A. Tomiyama, Struggle with computational bubble dynamics, Proceedings of the Third International Conference on Multiphase Flow, Lyon, France, F, 1998, Elsevier Science Ltd., Lyon, France, 1998. |
[46] | L. Schiller, Z. Naumann, A drag coefficient correlation, VDI Ztg. 77(1935) 318-320. |
[47] | N.T. Padial, W.B. VanderHeyden, R.M. Rauenzahn, et al., Three-dimensional simulation of a three-phase draft-tube bubble column, Chem. Eng. Sci. 55(16) (2000) 3261-3273. |
[48] | Y. Sato, M. Sadatomi, K. Sekoguchi, Momentum and heat transfer in two-phase bubble flow-I. Theory, Int. J. Multiphase Flow 7(2) (1981) 167-177. |
[49] | J.O. Hinze, Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AIChE J. 1(3) (1955) 289-295. |
[50] | R.S. Cherry, E.T. Papoutsakis, Hydrodynamic effects on cells in agitated tissue culture reactors, Bioprocess Eng. 1(1) (1986) 29-41. |
[51] | K.M. Dhanasekharan, J. Sanyal, A. Jain, et al., A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics, Chem. Eng. Sci. 60(1) (2005) 213-218. |
[52] | F. Kerdouss, A. Bannari, P. Proulx, et al., Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model, Comput. Chem. Eng. 32(8) (2008) 1943-1955. |
[53] | S. Nedeltchev, Correction of the penetration theory applied for prediction of mass transfer coefficients in a high-pressure bubble column operated with gasoline and toluene, J. Chem. Eng. Jpn. 36(5) (2003) 630-633. |
[54] | R. Higbie, The rate of absorption of a pure gas into a still liquid during short period of exposure, Trans. AIChE 31(16) (1935) 365-389. |
[55] | Y. Zhang, Y. Bai, H. Wang, CFD analysis of inter-phase forces in a bubble stirred vessel, Chem. Eng. Res. Des. 91(1) (2013) 29-35. |
[56] | G. Montante, D. Horn, A. Paglianti, Gas-liquid flow and bubble size distribution in stirred tanks, Chem. Eng. Sci. 63(8) (2008) 2107-2118. |
[57] | S. Yang, X. Li, C. Yang, et al., Computational fluid dynamics simulation and experimental measurement of gas and solid holdup distributions in a gas-liquid-solid stirred reactor, Ind. Eng. Chem. Res. 55(12) (2016) 3276-3286. |
[58] | X. Geng, Z. Gao, Y. Bao, PIV study of flow in an aerated tank with a hollow blade turbine, Int. J. Chem. React. Eng. 10(1) (2012) 850-868. |
[59] | G. Montante, A. Paglianti, F. Magelli, Analysis of dilute solid-liquid suspensions in turbulent stirred tanks, Chem. Eng. Res. Des. 90(10) (2012) 1448-1456. |
[60] | V.B. Rewatkar, K.S.M.S.R. Rao, J.B. Joshi, Critical impeller speed for solid suspension in mechanically agitated three-phase reactors. 1. Experimental part, Ind. Eng. Chem. Res. 30(8) (1991) 1770-1784. |
[61] | N.N. Dutta, V.G. Pangarkar, Critical impeller speed for solid suspension in multiimpeller agitated contactors:Solid-liquid system, Chem. Eng. Commun. 137(1) (1995) 135-146. |
[62] | K. Saravanan, A.W. Patwardban, J.B. Joshi, Critical impeller speed for solid suspension in gas inducing type mechanically agitated contactors, Can. J. Chem. Eng. 75(8) (1997) 664-676. |
[63] | A.P. van der Westhuizen, D.A. Deglon, Solids suspension in a pilot-scale mechanical flotation cell:A critical impeller speed correlation, Miner. Eng. 21(8) (2008) 621-629. |
[64] | A. Tamburini, A. Cipollina, G. Micale, et al., CFD simulations of dense solid-liquid suspensions in baffled stirred tanks:Prediction of the minimum impeller speed for complete suspension, Chem. Eng. J. 193-194(2012) 234-255. |
[65] | S. Hosseini, D. Patel, F. Ein-Mozaffari, et al., Study of solid-liquid mixing in agitated tanks through computational fluid dynamics modeling, Ind. Eng. Chem. Res. 49(9) (2010) 4426-4435. |
[66] | M. Bohnet, G. Niesmak, Distribution of solids in stirred suspension, Ger. Chem. Eng. 51(4) (1979) 314-315. |
[67] | L.M. Oshinowo, A. Bakker, CFD modeling of solids suspension in stirred tanks, Proceedings of the TMS Annual Meeting, Seattle, WA, F, 2002. Minerals and Materials:Seattle, WA, 2002. |
[68] | A. Tamburini, A. Cipollina, G. Micale, et al., CFD simulations of dense solid-liquid suspensions in baffled stirred tanks:Prediction of solid particle distribution, Chem. Eng. J. 223(2013) 875-890. |
[1] | Tongan Yan, Dahuan Liu, Qingyuan Yang, Chongli Zhong. Screening and design of COF-based mixed-matrix membrane for CH4/N2 separation[J]. 中国化学工程学报, 2022, 42(2): 170-177. |
[2] | Tongan Yan, Minman Tong, Qingyuan Yang, Dahuan Liu, Yandong Guo, Chongli Zhong. Large-scale simulations of CO2 diffusion in metal-organic frameworks with open Cu sites[J]. 中国化学工程学报, 2022, 42(2): 1-9. |
[3] | Jiawei Liao, Litao Zhu, Zhenghong Luo. Heterogeneity analysis of gas-solid flow hydrodynamics in a pilot-scale fluidized bed reactor[J]. 中国化学工程学报, 2022, 50(10): 117-129. |
[4] | Erfan Khodabandeh, Hesam Moghadasi, Mohsen Saffari Pour, Mikael Ersson, Pär G. Jönsson, Marc A. Rosen, Alireza Rahbari. CFD study of non-premixed swirling burners: Effect of turbulence models[J]. 中国化学工程学报, 2020, 28(4): 1029-1038. |
[5] | Yefeng Zhou, Yifan Han, Yujian Lu, Hongcun Bai, Xiayi Hu, Xincheng Zhang, Fanghua Xie, Xiao Luo, Jingdai Wang, Yongrong Yang. Numerical simulations and comparative analysis of two- and three-dimensional circulating fluidized bed reactors for CO2 capture[J]. 中国化学工程学报, 2020, 28(12): 2955-2967. |
[6] | Meng Li, Yangbo Tan, Jianglong Sun, De Xie, Zeng Liu. Drawdown mechanism of light particles in baffled stirred tank for the KR desulphurization process[J]. Chinese Journal of Chemical Engineering, 2019, 27(2): 247-256. |
[7] | Xinyu Yu, Tianwen Chen, Qi Zhang, Tiefeng Wang. CFD simulations of quenching process for partial oxidation of methane: Comparison of jet-in-cross-flow and impinging flow configurations[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 903-913. |
[8] | Lei Huang, Lin Qi, Hongna Wang, Jinli Zhang, Xiaoqiang Jia. Optimal design of heat exchanger header for coal gasification in supercritical water through CFD simulations[J]. , 2017, 25(8): 1101-1108. |
[9] | Weiguo Xu, Guodong Liu, Qinghong Zhang, Shuai Wang, Huilin Lu, Heping Tan. Heat transfer and friction factor of Therminol liquid phase heat transfer fluid in a ribbed tube[J]. , 2017, 25(10): 1343-1351. |
[10] | Weiguo Xu, Guodong Liu, Qinghong Zhang, Shuai Wang, Huilin Lu, Heping Tan. Heat transfer and friction factor of Therminol liquid phase heat transfer fluid in a ribbed tube[J]. , 2017, 25(10): 1343-1351. |
[11] | 朱爱梅, 张新波, 刘庆林, 张秋根. A Fully Flexible Potential Model for Carbon Dioxide[J]. , 2009, 17(2): 268-272. |
[12] | 闵健,高正明. Large Eddy Simulations of Mixing Time in a Stirred Tank[J]. , 2006, 14(1): 1-7. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 249
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 493
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||