[1] A.C. Bringen, Simple microfluids, Int. J. Eng. Sci. 2(1964) 205-217. [2] A.C. Eringen, Theory of micropolar fluids, Journal of Mathematics and Mechanics (1966) 1-18. [3] A.C. Eringen, Theory of thermomicrofluids, J. Math. Anal. Appl. 38(1972) 480-496. [4] A. Ishak, R. Nazar, I. Pop, Boundary-layer flow of a micropolar fluid on a continuous moving or fixed surface, Can. J. Phys. 84(2006) 399-410. [5] A. Ishak, R. Nazar, I. Pop, Moving wedge and flat plate in a micropolar fluid, Int. J. Eng. Sci. 44(2006) 1225-1236. [6] N.A. Kelson, T.W. Farrell, Micropolar flow over a porous stretching sheet with strong suction or injection, International Communications in Heat and Mass Transfer 28(2001) 479-488. [7] R. Bhargava, L. Kumar, H.S. Takhar, Finite element solution of mixed convection micropolar flow driven by a porous stretching sheet, Int. J. Eng. Sci. 41(2003) 2161-2178. [8] S.U. Choi, J.A. Estman, Enhancing thermal conductivity of fluids with nanoparticles, ASME-Publications-Fed 231(1995) 99-106. [9] H. Masuda, A. Ebata, K. Teramae, Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles. Dispersion of Al2O3, SiO2 and TiO2 UltraFine Particles, Jpn J. Thermophys. Prop. 7(4) (1993) 227-233(in Japanese). [10] S. Lee, S.-S. Choi, S. Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transf. 121(1999) 280-289. [11] Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow 21(2000) 58-64. [12] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transf. 43(2000) 3701-3707. [13] M. Izadi, A. Behzadmehr, M.M. Shahmardan, Effects of inclination angle on laminar mixed convection of a nanofluid flowing through an annulus, Chem. Eng. Commun. 202(2015) 1693-1702. [14] M. Izadi, A. Behzadmehr, M.M. Shahmardan, Effects of inclination angle on mixed convection heat transfer of a nanofluid in a square cavity, International Journal for Computational Methods in Engineering Science and Mechanics 16(2015) 11-21. [15] M. Izadi, M.M. Shahmardan, Am Rashidi, Study on thermal and hydrodynamic indexes of a nanofluid flow in a micro heat sink, Transp Phenom Nano Micro Scales 1(2013) 53-63. [16] M. Izadi, M.M. Shahmardan, A. Behzadmehr, Richardson number ratio effect on laminar mixed convection of a nanofluid flow in an annulus, International Journal for Computational Methods in Engineering Science and Mechanics 14(2013) 304-316. [17] M. Izadi, M.M. Shahmardan, A. Behzadmehr, Am Rashidi, A. Amrollahi, Modeling of effective thermal conductivity and viscosity of carbon structured nanofluid, Transp Phenom Nano Micro Scales 3(2015) 1-13. [18] M. Izadi, R. Mohebbi, D. Karimi, M.A. Sheremet, Numerical simulation of natural convection heat transfer inside a ┴ shaped cavity filled by a MWCNT-Fe3O4/water hybrid nanofluids using LBM, Chemical Engineering and Processing-Process Intensification 125(2018) 56-66. [19] R. Mohebbi, M. Izadi, A.J. Chamkha, Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid, Phys. Fluids 29(2017), 122009. [20] A. Zaraki, M. Ghalambaz, A.J. Chamkha, M. Ghalambaz, D. de Rossi, Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids:Effects of size, shape and type of nanoparticles, type of base fluid and working temperature, Adv. Powder Technol. 26(2015) 935-946. [21] M. Ghalambaz, M.A. Sheremet, I. Pop, Free convection in a parallelogrammic porous cavity filled with a nanofluid using Tiwari and Das' nanofluid model, PLoS One 10(2015), e0126486. [22] M. Ghalambaz, A. Behseresht, J. Behseresht, A. Chamkha, Effects of nanoparticles diameter and concentration on natural convection of the Al2O3-water nanofluids considering variable thermal conductivity around a vertical cone in porous media, Adv. Powder Technol. 26(2015) 224-235. [23] A. Noghrehabadi, A. Behseresht, M. Ghalambaz, Natural convection of nanofluid over vertical plate embedded in porous medium:prescribed surface heat flux, Appl. Math. Mech. 34(2013) 669-686. [24] H. Hashemi, Z. Namazian, S.M.H. Zadeh, S.A. Mehryan, MHD natural convection of a micropolar nanofluid flowing inside a radiative porous medium under LTNE condition with an elliptical heat source, J. Mol. Liq. 271(2018) 914-925. [25] M. Izadi, S. Sinaei, S. Mehryan, H.F. Oztop, N. Abu-Hamdeh, Natural convection of a nanofluid between two eccentric cylinders saturated by porous material:Buongiorno's two phase model, Int. J. Heat Mass Transf. 127(2018) 67-75. [26] S.A. Mehryan, M. Ghalambaz, M. Izadi, Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid, porous medium and free nanofluid using Buongiorno's and local thermal non-equilibrium models, J. Therm. Anal. Calorim. 135(2019) 1047-1067. [27] M. Izadi, R. Mohebbi, A.A. Delouei, H. Sajjadi, Natural convection of a magnetizable hybrid nanofluid inside a porous enclosure subjected to two variable magnetic fields, Int. J. Mech. Sci. 151(2019) 154-169. [28] H. Sajjadi, A. Amiri Delouei, M. Izadi, R. Mohebbi, Investigation of MHD natural convection in a porous media by double MRT lattice Boltzmann method utilizing MWCNT-Fe3O4/water hybrid nanofluid, Int. J. Heat Mass Transf. 132(2019) 1087-1104. [29] S. Mehryan, M.A. Sheremet, M. Soltani, M. Izadi, Natural convection of magnetic hybrid nanofluid inside a double-porous medium using two-equation energy model, J. Mol. Liq. 277(2019) 959-970. [30] M. Ghalambaz, M. Sabour, I. Pop, Free convection in a square cavity filled by a porous medium saturated by a nanofluid:Viscous dissipation and radiation effects, Engineering science and technology, an international journal 19(2016) 1244-1253. [31] A.V. Kuznetsov, D.A. Nield, The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid:A revised model, Int. J. Heat Mass Transf. 65(2013) 682-685. [32] D.A. Nield, A. Bejan, Convection in Porous Media, Springer, 2006. [33] M. Sabour, M. Ghalambaz, Natural convection in a triangular cavity filled with a nanofluid-saturated porous medium using three heat equation model, Can. J. Phys. 94(2016) 604-615. [34] M. Izadi, G. Hoghoughi, R. Mohebbi, M. Sheremet, Nanoparticle migration and natural convection heat transfer of Cu-water nanofluid inside a porous undulant-wall enclosure using LTNE and two-phase model, J. Mol. Liq. 261(2018) 357-372. [35] S.A. Mehryan, M. Izadi, A.J. Chamkha, M.A. Sheremet, Natural convection and entropy generation of a ferrofluid in a square enclosure under the effect of a horizontal periodic magnetic field, J. Mol. Liq. 263(2018) 510-525. [36] S.A. Mehryan, M. Izadi, M.A. Sheremet, Analysis of conjugate natural convection within a porous square enclosure occupied with micropolar nanofluid using local thermal non-equilibrium model, J. Mol. Liq. 250(2018) 353-368. [37] G. Hoghoughi, M. Izadi, H.F. Oztop, N. Abu-Hamdeh, Effect of geometrical parameters on natural convection in a porous undulant-wall enclosure saturated by a nanofluid using Buongiorno's model, J. Mol. Liq. 255(2018) 148-159. [38] W.A. Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Transf. 53(2010) 2477-2483. [39] M. Hassani, M.M. Tabar, H. Nemati, G. Domairry, F. Noori, An analytical solution for boundary layer flow of a nanofluid past a stretching sheet, Int. J. Therm. Sci. 50(2011) 2256-2263. [40] A. Noghrehabadi, R. Pourrajab, M. Ghalambaz, Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature, Int. J. Therm. Sci. 54(2012) 253-261. [41] M. Uddin, W.A. Khan, A.I. Ismail, Scaling group transformation for MHD boundary layer slip flow of a nanofluid over a convectively heated stretching sheet with heat generation, Math. Probl. Eng. 2012(2012). [42] A. Noghrehabadi, M.R. Saffarian, R. Pourrajab, M. Ghalambaz, Entropy analysis for nanofluid flow over a stretching sheet in the presence of heat generation/absorption and partial slip, J. Mech. Sci. Technol. 27(2013) 927-937. [43] L. Zheng, C. Zhang, X. Zhang, J. Zhang, Flow and radiation heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump in porous medium, Journal of the Franklin Institute 350(2013) 990-1007. [44] K.-L. Hsiao, Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature, Int. J. Heat Mass Transf. 112(2017) 983-990. [45] A. Zeeshan, A. Majeed, R. Ellahi, Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation, J. Mol. Liq. 215(2016) 549-554. [46] A. Sharma, R.G. Shandil, Effect of magnetic field dependent viscosity on ferroconvection in the presence of dust particles, J. Appl. Math. Comput. 27(2008) 7. [47] L. Wang, Y. Wang, X. Yan, X. Wang, B. Feng, Investigation on viscosity of Fe3O4 nanofluid under magnetic field, International Communications in Heat and Mass Transfer 72(2016) 23-28. [48] P.K. Bharti, D. Sharma, R.C. Sharma, The effect of a magnetic field dependent viscosity on the thermal convection in a ferromagnetic fluid in a porous medium, Zeitschrift für Naturforschung A 59(2004) 397-406. [49] M. Sheikholeslami, M.M. Rashidi, T. Hayat, D.D. Ganji, Free convection of magnetic nanofluid considering MFD viscosity effect, J. Mol. Liq. 218(2016) 393-399. [50] J. Buongiorno, Convective transport in nanofluids, J. Heat Transf. 128(2006) 240-250. [51] A.V. Kuznetsov, The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms, International Communications in Heat and Mass Transfer 37(2010) 1421-1425. [52] W.N. Mutuku, O.D. Makinde, Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms, Comput. Fluids 95(2014) 88-97. [53] R.S. Tripathy, G.C. Dash, S.R. Mishra, M.M. Hoque, Numerical analysis of hydromagnetic micropolar fluid along a stretching sheet embedded in porous medium with non-uniform heat source and chemical reaction, Engineering science and technology, an international journal 19(2016) 1573-1581. [54] M.S. Kandelousi, KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel, Phys. Lett. A 378(2014) 3331-3339. [55] M. Sheikholeslami, M.M. Bhatti, Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles, Int. J. Heat Mass Transf. 111(2017) 1039-1049. [56] M. Sheikholeslami, R. Ellahi, M. Hassan, S. Soleimani, A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder, International Journal of Numerical Methods for Heat & Fluid Flow 24(2014) 1906-1927. [57] H. Hashemi, Z. Namazian, S.A. Mehryan, Cu-water micropolar nanofluid natural convection within a porous enclosure with heat generation, J. Mol. Liq. 236(2017) 48-60. [58] M. Qasim, I. Khan, S. Shafie, Heat transfer in a micropolar fluid over a stretching sheet with Newtonian heating, PLoS One 8(2013), e59393. [59] M.Z. Salleh, R. Nazar, I. Pop, Boundary layer flow and heat transfer over a stretching sheet with Newtonian heating, J. Taiwan Inst. Chem. Eng. 41(2010) 651-655. [60] K. Raslan, S. Mohamadain, M. Abdel-wahed, E. Abedel-aal, MHD steady/unsteady porous boundary layer of Cu-water nanofluid with micropolar effect over a permeable surface, Appl. Sci. 8(2018) 736. |