[1] J.A. Darr, M. Poliakoff, New directions in inorganic and metal-organic. Coordination chemistry in supercritical fluids, Chem. Rev. 99(1999) 495-541. [2] T. Adschiri, K. Kanazawa, Rapid and continuous hydrothermal synthesis of boehmite particles in sub and supercritical water, J. Am. Ceram. Soc. 75(1992) 2615-2618. [3] S. Moussiere, P. Joussot-Dubien, Modeling of heat transfer and hydrodynamic with two kinetics approaches during supercritical water oxidation process, J. Supercrit. Fluids 43(2007) 324-332. [4] A.E. Scheidegger, The Physics of Flow Through Porous Media, Univ. Toronto Press, 1974. [5] M. Kaviany, Principles of Heat Transfer in Porous Media, Springer, 1995. [6] A. Aimable, H. Muhr, Continuous hydrothermal synthesis of inorganic nano powders in supercritical water:Towards a better control of the process, Powder Technol. 190(2009) 99-106. [7] M.D. Bermejo, M.J. Cocero, Supercritical water oxidation:A technical review, AIChE. J. 52(2006) 3933-3951. [8] E. Lester, P. Blood, Reaction engineering:The supercritical water hydrothermal synthesis of nano-particles, J. Supercrit. Fluids 37(2006) 209-214. [9] M. Vesna, J. Christopher, K. Suela, Imaging the continuous hydrothermal flow synthesis of nano-particulate CeO2 at different supercritical water temperatures using in situ angle-dispersive diffraction, J. Supercrit. Fluids 87(2015) 118-128. [10] K. Brett, F. Veruscha, Critical process parameters and their interactions on the continuous hydrothermal synthesis of ironoxide nanoparticles, Chem. Eng. J. 281(2015) 312-321. [11] E. Sherif, E.M. Hosam, Synthesis and surface modification of nanophosphorousbased flame retardant agent by continuous flow hydrothermal synthesis, Particuology 22(2015) 82-88. [12] F.W. Dittus, L.M.K. Boelter, Heat transfer in automobile radiators of the tubular type, Univ. Calif. Publ. Eng. 2(1930) 443-461. [13] E.A. Krasnoshchekov, B.S. Petukhov, V.S. Protopopov, An investigation of heat transfer to fluids flowing in pipes under supercritical conditions, Proceedings of the Second International Heat Transfer Conference, University of Colorado, Boulder, USA 1961, pp. 569-578. [14] J.D. Jackson, W.B. Hall, Forced convection heat transfer to fluids at supercritical pressure, Turbulent Forced Convection in Channels and Bundles, vol. 2, Hemisphere Publishing Corporation, New York 1979, pp. 563-611. [15] M.J. Watts, C.T. Chou, Mixed convection heat transfer to supercritical pressure water, Proceedings of the 7th International Heat Transfer Conference, Munchen, Germany 1982, pp. 495-500. [16] N. Zhou, A. Krishnan, F. Vogel, A computational model for supercritical water oxidation of organic toxic wastes, Adv. Environ. Res. 4(2000) 79-95. [17] J. Licht, M. Anderson, M. Corradini, Heat transfer to water at supercritical pressures in a circular and square annular flow geometry, Int. J. Heat Fluid Flow 29(2008) 156-166. [18] Y.M. Cai, J.T. Christopher, Numerical modelling of hydrothermal fluid flow and heat transfer in a tubular heat exchanger under near critical conditions, J. Supercrit. Fluids 57(2011) 236-246. [19] Y.M. Cai, J. Jing, Z. Yang, Z. Xue, Simulation for scale-up of a confined jet mixer for continuous hydrothermal flow synthesis of nanomaterials, J. Supercrit. Fluids 58(2015) 211-222. [20] J. Gheorghe, The influence of the porous media permeability on the unsteady conjugate forced convection heat transfer from a porous sphere embedded in a porous medium, Int. J. Heat Mass Transf. 77(2014) 1124-1132. [21] R. Fumei, Zh. Wenhuan, Sh. Baochang, Numerical study of heat transfer enhancement in a pipe filled with porous media by axisymmetric TLB model based on GPU, Int. J. Heat Mass Transf. 70(2014) 1040-1049. [22] J. Wajs, D. Mikielewicz, Influence of metallic porous microlayer on pressure drop and heat transfer of stainless steel plate heat exchanger, Appl. Therm. Eng. 93(2015) 1337-1346. [23] G.C. Bourantas, E.D. Skouras, V.C. Loukopoulos, Heat transfer and natural convection of nanofluids in porous media, Eur. J. Mech. B Fluids 43(2014) 45-56. [24] W. Lin, B. Sundén, J. Yuan, A performance analysis of porous graphite foam heat exchangers in vehicles, Appl. Therm. Eng. 50(2013) 1201-1210. [25] W. Wang, J. Guo, S. Zhang, J. Yang, X. Ding, X. Zhan, Numerical study on hydrodynamic characteristics of plate-fin heat exchanger using porous media approach, Comput. Chem. Eng. 61(2014) 30-37. [26] D.C. Wilcox, Turbulent Modeling for CFD, Second ed. DCW Industries, California, 1994. [27] W.P. Jones, B.E. Launder, The prediction of laminarization with a two-equation model of turbulence, Int. J. Heat Mass Transf. 15(1972) 301-314. [28] C. Somerton, P. Wood, Effect of walls in modeling flow through porous media, J. Hydraul. Eng. 114(1988) 1431-1448. [29] D.A. Nield, A. Bejan, Convection in Porous Media, Third edition Springer, 2006. [30] C. Wang, Zh. Guo, D. Zhang, S. Qiu, W. Tian, Y. Wu, G. Su, Transient behavior of the sodium-potassium alloy heat pipe in passive residual heat removal system of molten salt reactor, Prog. Clear Energy 68(2013) 142-152. [31] http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+Fluent. [32] H. Xu, L. Gong, S. Huang, M. Xu, Flow and heat transfer characteristics of nanofluid flowing through porous media, Int. J. Heat Mass Transf. 83(2014) 399-407. |