[1] D. Wu, X.Z. Ma, S.Q. Zhang, Integrating synergistic effects of air pollution control technologies:More cost-effective approach in the coal-fired sector in China, J. Clean. Production 199(20) (2018) 1035-1042. [2] C.L. Gage, Limestone dissolution in modelling of slurry scrubbing for flue gas desulfurization, Ph.D, Thesis, University of Texas, Texas 1989. [3] R.S. Argarwal, G.T. Rochelle, Chemistry of Limestone Slurry Scrubbing, SO2 Control Symposium 3, 2015. [4] C. Brogren, H.T. Karlson, A model for prediction of limestone dissolution in wet flue gas desulfurization applications, Ind. Eng. Chem. Res. 36(9) (1997) 3889-3897. [5] D. Eden, M. Luckas, A heat and mass transfer model for the simulation of the wet limestone flue gas scrubbing process, Chem. Eng. Technol. 21(1) (1998) 56-60. [6] H. Kikkawa, H. Kaku, S. Nozawa, K. Kohata, New wet FGD process using granular limestone, Proceedings of power gen Europe (1997) 585-601. [7] J. Warych, M. Szymanowski, Model of the wet limestone flue gas desulfurization process for cost optimization, Ind. Eng. Chem. Res. 40(12) (2001) 2597-2605. [8] S. Kiil, M.L. Michelsen, K.D. Johansen, Experimental investigation and modelling of a wet flue gas desulphurisation pilot plant, Ind. Eng. Chem. Res. 37(1998) 2792-2806. [9] M.X. Guo, Studies of slurry jet flue gas desulfurization, Ph. D. Thesis, Tsinghua Univ., Beijing, (2002). [10] L. Wurth, R. Hannemann, W. Marquardt, Neighboring-extremal updates for nonlinear model-predictive control and dynamic real-time optimization, J. Process Control 19(8) (2009) 1277-1288. [11] H.G. Bock, M.M. Diehl, D.B. Leineweber, J.P. Schloder, A direct multiple shooting method for real-time optimization of nonlinear DAE processes, J. Process Control 26(2009) 245-267. [12] F. Allgöwer, A. Zheng, Nonlinear model predictive control, progress in systems and control theory, Birkhäuser Verlag 26(2000) 245-267. [13] M. Diehl, H. Bock, J. Schloder, R. Findeisen, Z. Nagy, F. Allgower, Real-time optimization and nonlinear model predictive control of processes governed by differentialalgebraic equations, J. Process Control 12(4) (2002) 577-585. [14] L. Grüne, J. Pannek, Analysis of unconstrained NMPC schemes with incomplete optimization, IFAC Proceedings 43(14) (2010) 238-243. [15] V.M. Zavala, M. Anitescu, Real-time nonlinear optimization as a generalized equation, SIAM J. Control. Optim. 48(2010) 5444-5467. [16] I.J. Wolf, L. Würth, W. Marquardt, Rigorous solution vs. fast update:acceptable computational delay in NMPC, 50th IEEE CDC-ECC 2011, pp. 5230-5235. [17] V.M. Zavala, L.T. Biegler, The advanced-step NMPC controller:optimality, stability and robustness, Automatica 45(1) (2009) 86-93. [18] J. Jäschke, X. Yang, L.T. Biegler, Fast economic model predictive control based on NLP-sensitivities, J. Process Control 24(8) (2014) 1260-1272. [19] M.V. Sotnikova, Control system design for visual positioning of a ship based on NMPC and multi-objective structure, IFAC-PapersOnLine 51(32) (2018) 445-450. [20] O. Makoto, T. Gaku, Real-time autonomous car motion planning using NMPC with approximated problem considering traffic environment, IFAC-PapersOnLine 51(20) (2018) 279-286. [21] W.Y. Zhang, D.X. Huang, Y.D. Wang, J.C. Wang, Adaptive state feedback predictive control and expert control for a delayed coking furnace, Chin. J. Chem. Eng. 16(4) (2008) 590-598. [22] H. Flemming, M. Alexander, T.B. Lorenz, Multistage NMPC with on-line generated scenario trees:Application to a semi-batch polymerization process, J. Process Control 80(2019) 167-179. [23] M.Z. Yu, T.B. Lorenz, Economic NMPC strategies for solid sorbent-based CO2 capture, IFAC-PapersOnLine 51(18) (2018) 103-108. [24] D. Telen, B. Houska, M. Vallerio, F. Logist, J. Vanimpe, A study of integrated experiment design for NMPC applied to the Droop model, Chem. Eng. Sci. 160(2017) 370-383. [25] A.V. Fiacco, G.P. McCormick, Nonlinear Programming:Sequential Unconstrained Minimization Techniques, John Wiley & Sons Inc., 1968 [26] S.H. Chen, H.M. He, X.F. Li, G. Chen, Application of fuzzy PID controller with selfadaptive algorithm and non-uniform grid scheduling to WFGD, IFAC Proceedings Volumes 42(9) (2009) 20-25. [27] A. Gautam, Y.C. Chu, Y.C. Soh, Optimized dynamic policy for receding horizon control of linear time-varying systems with bounded disturbances, IEEE Trans Automat Control 57(4) (2012) 973-988. [28] Alexandra Grancharova, Tor A. Johansen, Computation, approximation and stability of explicit feedback min-max nonlinear model predictive control, Automatica 45(5) (2009) 1134-1143. [29] D.F. Hen, H. Huang, Q.X. Chen, Quasi-min-max MPC for constrained nonlinear systems with guaranteed input-to-state stability, Journal of the Franklin Institute 351(6) (2014) 3405-3423. [30] Y. Zhong, X. Gao, W. Huo, Z.Y. Luo, M.J. Ni, K.F. Cen, A model for performance optimization of wet flue gas desulfurization systems of power plants, Fuel Process. Technol. 89(11) (2008) 1025-1032. [31] G. Helle, K. Søren, E.J. Jan, N.J. Jørgen, H. Jørn, F. Folmer, D.J. Kim, Full-scale measurements of SO2 gas phase concentrations and slurry compositions in a wet flue gas desulphurisation spray absorber, Fuel 83(9) (2004) 1151-1164. [32] Q. Zhang, S.J. Wang, P. Zhu, Z.Y. Wang, G. Zhang, Full-scale simulation of flow field in ammonia-based wet flue gas desulfurizationdouble tower, J. Energy Inst. 91(4) (2018) 619-629. [33] C. Patricia, Status of flue gas desulphurisation (FGD) systems from coal-fired power plants:Overview of the physic-chemical control processes of wet limestone FGDs, Fuel 144(2015) 274-286. [34] X.H. Li, Y.D. He, Simulation of flue gas flow field in the spraying tower of wet flue gas desulfurization system Therm, Power Generation Technologies 39(2010) 41-45. [35] L.Q. Li, C. Zhang, G.J. Huang, Z. Liu, W.W. Ma, A multicomponent droplet model in simulating mass transfer of the ammonia-based spray process, Proc. CSEE. 34(2014) 5741-5749. [36] S.L. Zhao, Y.F. Duan, J.C. Lu, R. Gupt, D. Pudasainee, S. Liu, M. Liu, J.H. Lua, Thermal stability, chemical speciation and leaching characteristics of hazardous trace elements in FGD gypsum from coal-fired power plants, Fuel 231(2018) 94-100. [37] P. Córdoba, R. Ochoa-Gonzalez, O. Font, M. Izquierdo, X. Querol, C. Leiva, Partitioning of trace inorganic elements in a coal-fired power plant equipped with a wet flue gas desulphurisation system, Fuel 92(2012) 145-157. [38] R. Meij, T.H. Winkel, The emissions and environmental impact of PM10 and trace elements from a modern coal-fired power plant equipped with ESP and wet FGD, Fuel Process. Technol. 85(2004) 641-656. [39] C. Claudio, D.B. Cataldo, M. Marianna, P. Raffaele, W. Tapio, Ultrasonic enhanced limestone dissolution:Experimental and mathematical modeling, Chemical Engineering and Processing:Process Intensification 118(2017) 26-36. [40] J. Rawlings, D. Mayne, Model Predictive Control:Theory and Design, Nob Hill Publishing, San Francisco, 2009. [41] G. Lars, NMPC without terminal constraints, IFAC Proceedings 45(17) (2012) 1-13. [42] A.W. Hermansson, S. Syafiie, An offset-free MPC formulation for nonlinear systems using adaptive integral controller, ISA Trans. 91(2019) 66-77. [43] B.W. Frandsen, K. Søren, E.J. Jan, Optimisation of a wet FGD pilot plant using fine limestone and organic acids, Chem. Eng. Sci. 56(10) (2001) 3275-3287. [44] Z. Mario, G. Sébastien, D. Moritz, A tracking MPC formulation that is locally equivalent to economic MPC, J. Process Control 45(2016) 30-42. [45] M. Ellis, P.D. Christofides, Economic model predictive control with timevarying objective function for nonlinear process systems, AIChE J. 60(2014) 507-519. [46] M. Zanon, S. Gros, M. Diehl, Indefinite linear MPC and approximated economic MPC for nonlinear systems, J. Process Control 24(2014) 1273-1281. |