[1] D. Cebrucean, V. Cebrucean, I. Ionel, CO2 capture and storage from fossil fuel power plants, Energy Procedia 63(2014) 18-26. [2] J. Liu, Q. Yang, Y. Zhang, W. Sun, Y. Xu, Analysis of CO2 emissions in China's manufacturing industry based on extended logarithmic mean division index decomposition, Sustainability 11(1) (2019) 1-28. [3] L.C.Y. Yu, K.L. Sedransk Campbell, D.R. Williams, Using carbon steel in the stripper and reboiler for post-combustion CO2 capture with aqueous amine blends, International Journal of Greenhouse Gas Control 51(2016) 380-393. [4] W. Li, J. Landon, B. Irvin, L. Zheng, K. Ruh, L. Kong, J. Pelgen, D. Link, J.D. Figueroa, J. Thompson, H. Nikolic, K. Liu, Use of carbon steel for construction of post-combustion CO2 capture facilities:A pilot-scale corrosion study, Ind. Eng. Chem. Res. 56(16) (2017) 4792-4803. [5] D. Dwivedi, K. Lepková, T. Becker, Carbon steel corrosion:A review of key surface properties and characterization methods, RSC Adv. 7(8) (2017) 4580-4610. [6] M.F. Hasan, Analysis of mechanical behavior and microstructural characteristics change of ASTM A-36 steel applying various heat treatment, J. Mater. Sci. Eng. 5(2) (2016) 227. [7] B.W. Darvell, in:B.W. Darvell (Ed.), Chapter 13-Corrosion in materials science for dentistry, Woodhead Publishing, UK 2018, pp. 381-398. [8] A. Kahyarian, B. Brown, S. Nesic, Mechanism of CO2 corrosion of mild steel:A new narrative, Corrosion 2018, NACE International, Phoenix, Arizona, USA 2018, p. 16. [9] R. Javaherdashti, How corrosion affects industry and life, Anti-Corrosion Methods and Materials 47(1) (2000) 30-34. [10] Corrosion Cost and Preventive Strategies in the United States. (FHWA-RD-01-156) (2002). [11] A. Nuchitprasittichai, S. Cremaschi, Sensitivity of amine-based CO2 capture cost:The influences of CO2 concentration in flue gas and utility cost fluctuations, International Journal of Greenhouse Gas Control 13(2013) 34-43. [12] M. Oschatz, M. Antonietti, A search for selectivity to enable CO2 capture with porous adsorbents, Energy Environ. Sci. 11(1) (2018) 57-70. [13] D.H. Van Wagener, G.T. Rochelle, Stripper configurations for CO2 capture by aqueous monoethanolamine and piperazine, Energy Procedia 4(2011) 1323-1330. [14] P. Luis, Use of monoethanolamine (MEA) for CO2 capture in a global scenario:Consequences and alternatives, Desalination 380(2016) 93-99. [15] V. Barbarossa, F. Barzagli, F. Mani, S. Lai, P. Stoppioni, G. Vanga, Efficient CO2 capture by non-aqueous 2-amino-2-methyl-1-propanol (AMP) and low temperature solvent regeneration, RSC Adv. 3(30) (2013) 12349-12355. [16] S. Mudhasakul, H.-m. Ku, P.L. Douglas, A simulation model of a CO2 absorption process with methyldiethanolamine solvent and piperazine as an activator, International Journal of Greenhouse Gas Control 15(2013) 134-141. [17] Y.K. Salkuyeh, M. Mofarahi, Comparison of MEA and DGA performance for CO2 capture under different operational conditions, Int. J. Energy Res. 36(2) (2012) 259-268. [18] J. Liu, X. Li, Z. Zhang, L. Li, Y. Bi, L. Zhang, Promotion of CO2 capture performance using piperazine (PZ) and diethylenetriamine (DETA) bi-solvent blends, Greenhouse Gases:Science and Technology 9(2) (2019) 349-359. [19] K.L.S. Campbell, Y. Zhao, J.J. Hall, D.R. Williams, The effect of CO2-loaded amine solvents on the corrosion of a carbon steel stripper, International Journal of Greenhouse Gas Control 47(2016) 376-385. [20] J. Kittel, R. Idem, D. Gelowitz, P. Tontiwachwuthikul, G. Parrain, A. Bonneau, Corrosion in MEA units for CO2 capture:Pilot plant studies, Energy Procedia 1(1) (2009) 791-797. [21] G. Fytianos, A. Grimstvedt, H. Knuutila, H.F. Svendsen, Effect of MEA's degradation products on corrosion at CO2 capture plants, Energy Procedia 63(2014) 1869-1875. [22] L.T. Popoola, A.S. Grema, G.K. Latinwo, B. Gutti, A.S. Balogun, Corrosion problems during oil and gas production and its mitigation, International Journal of Industrial Chemistry 4(1) (2013) 35. [23] S. Szabó, Metal corrosion and its relation to other fields of science, Int. J. Corros. Scale Inhib. 4(1) (2015) 35-48. [24] R. Singh, R. Singh (Eds.), Chapter Six-Corrosion and Corrosion Protection, in Pipeline Integrity Handbook, 245-254, Gulf Professional Publishing, Boston, 2014. [25] J. Hernandez, A. Muñoz, J. Genesca, Formation of iron-carbonate scale-layer and corrosion mechanism of API X70 pipeline steel in carbon dioxide-saturated 3% sodium chloride, Afinidad 69(560) (2012). [26] A. Kahyarian, M. Achour, S. Nesic, in:A.M. El-Sherik (Ed.), 7-CO2 corrosion of mild steel, in Trends in Oil and Gas Corrosion Research and Technologies, Woodhead Publishing, Boston 2017, pp. 149-190. [27] J. Kotz, P. Treichel, J. Townsend, Chemistry and Chemical Reactivity, Cengage Learning, 2008. [28] J. Banaś, U. Lelek-Borkowska, B. Mazurkiewicz, W. Solarski, Effect of CO2 and H2S on the composition and stability of passive film on iron alloys in geothermal water, Electrochim. Acta 52(18) (2007) 5704-5714. [29] C. Nwaoha, T. Supap, R. Idem, C. Saiwan, P. Tontiwachwuthikul, M.J. Al-Marri, A. Benamor, Advancement and new perspectives of using formulated reactive amine blends for post-combustion carbon dioxide (CO2) capture technologies, Petroleum 3(1) (2017) 10-36. [30] R. Rowland, Q. Yang, P. Jackson, M. Attalla, Amine mixtures and the effect of additives on the CO2 capture rate, Energy Procedia 4(2011) 195-200. [31] B. Dutcher, M. Fan, A.G. Russell, Amine-based CO2 capture technology development from the beginning of 2013-A review, ACS Appl. Mater. Interfaces 7(4) (2015) 2137-2148. [32] I.M. Bernhardsen, H.K. Knuutila, A review of potential amine solvents for CO2 absorption process:Absorption capacity, cyclic capacity and pKa, International Journal of Greenhouse Gas Control 61(2017) 27-48. [33] 1998 Freshman Achievement Award., CRC Press LLC, 1998. [34] G.F. Versteeg, W.P.M. van Swaaij, On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions-I, Primary and Secondary Amines. Chemical Engineering Science 43(3) (1988) 573-585. [35] N. McCann, D. Phan, X. Wang, W. Conway, R. Burns, M. Attalla, G. Puxty, M. Maeder, Kinetics and mechanism of carbamate formation from CO2(aq), carbonate species, and monoethanolamine in aqueous solution, J. Phys. Chem. A 113(17) (2009) 5022-5029. [36] R.E. Reitmeier, V. Sivertz, H.V. Tartar, Some properties of monoethanolamine and its aqueous solutions, J. Am. Chem. Soc. 62(8) (1940) 1943-1944. [37] W.-J. Choi, J.-B. Seo, S.-Y. Jang, J.-H. Jung, K.-J. Oh, Removal characteristics of CO2 using aqueous MEA/AMP solutions in the absorption and regeneration process, J. Environ. Sci. 21(7) (2009) 907-913. [38] L.S. Tan, A.M. Shariff, K.K. Lau, M.A. Bustam, Impact of high pressure on high concentration carbon dioxide capture from natural gas by monoethanolamine/Nmethyl-2-pyrrolidone solvent in absorption packed column, International Journal of Greenhouse Gas Control 34(2015) 25-30. [39] J. Buzek, J. Podkański, K. Warmuziński, The enhancement of the rate of absorption of CO2 in amine solutions due to the Marangoni effect, Energy Convers. Manag. 38(1997) S69-S74. [40] L.S. Tan, A.M. Shariff, K.K. Lau, M.A. Bustam, Factors affecting CO2 absorption efficiency in packed column:A review, J. Ind. Eng. Chem. 18(6) (2012) 1874-1883. [41] A.S. Joel, M. Wang, C. Ramshaw, E. Oko, Process analysis of intensified absorber for post-combustion CO2 capture through modelling and simulation, International Journal of Greenhouse Gas Control 21(2014) 91-100. [42] M.S. Jassim, G. Rochelle, D. Eimer, C. Ramshaw, Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed, Ind. Eng. Chem. Res. 46(9) (2007) 2823-2833. [43] T. Sema, A. Naami, P. Usubharatana, X. Wang, R. Gao, Z. Liang, R. Idem, P. Tontiwachwuthikul, Mass transfer of CO2 absorption in hybrid MEA-methanol solvents in packed column, Energy Procedia 37(2013) 883-889. [44] F. Bougie, M.C. Iliuta, Sterically hindered amine-based absorbents for the removal of CO2 from gas streams, J. Chem. Eng. Data 57(3) (2012) 635-669. [45] P.D. Vaidya, S.G. Jadhav, Absorption of carbon dioxide into sterically hindered amines:Kinetics analysis and the influence of promoters, Can. J. Chem. Eng. 92(12) (2014) 2218-2227. [46] H. Svensson, C. Hulteberg, H.T. Karlsson, Precipitation of AMP carbamate in CO2 absorption process, Energy Procedia 63(2014) 750-757. [47] A. Aroonwilas, P. Tontiwachwuthikul, High-efficiency structured packing for CO2 separation using 2-amino-2-methyl-1-propanol (AMP), Sep. Purif. Technol. 12(1) (1997) 67-79. [48] A. Jahangiri, M. Nabipoor Hassankiadeh, Effects of piperazine concentration and operating conditions on the solubility of CO2 in AMP solution at low CO2 partial pressure, Sep. Sci. Technol. 54(6) (2019) 1067-1078. [49] A. Mindaryani, W. Budhijanto, S.S. Ningrum, Continuous absorption of CO2 in packed column using MDEA solution for biomethane preparation, IOP Conference Series:Materials Science and Engineering 162(1) (2016), 012006. [50] S. Babamohammadi, A. Shamiri, K. Aroua Mohamed, A review of CO2 capture by absorption in ionic liquid-based solvents, Reviews in Chemical Engineering 2015, p. 383. [51] J. Seagraves, R.H. Weiland, Treating High CO2 Gases with MDEA., Crambeth Allen Publishing Ltd, UK, 2009. [52] S. Mirzaei, A. Shamiri, K. Aroua Mohamed, A review of different solvents, mass transfer, and hydrodynamics for postcombustion CO2 capture, Reviews in Chemical Engineering 2015, p. 521. [53] J.G. Speiht, 8-Gas cleaning processes, in:J.G. Speight (Ed.), Natural Gas, Second edition, Gulf Professional Publishing, Boston 2019, pp. 277-324. [54] M. Edali, A. Aboudheir, R. Idem, Kinetics of carbon dioxide absorption into mixed aqueous solutions of MDEA and MEA using a laminar jet apparatus and a numerically solved 2D absorption rate/kinetics model, International Journal of Greenhouse Gas Control 3(5) (2009) 550-560. [55] E.B. Rinker, S.A. Sami, O.C. Sandall, Kinetics and modelling of carbon dioxide absorption into aqueous solutions of N-methyldiethanolamine, Chem. Eng. Sci. 50(5) (1995) 755-768. [56] T. Sema, A. Naami, Z. Liang, G. Chen, R. Gao, R. Idem, P. Tontiwachwuthikul, A novel reactive 4-diethylamino-2-butanol solvent for capturing CO2 in the aspect of absorption capacity, cyclic capacity, mass transfer, and reaction kinetics, Energy Procedia 37(2013) 477-484. [57] Z. Feng, F. Cheng-Gang, W. You-Ting, W. Yuan-Tao, L. Ai-Min, Z. Zhi-Bing, Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA, Chem. Eng. J. 160(2) (2010) 691-697. [58] A. Gladis, M.T. Gundersen, K. Thomsen, P.L. Fosbøl, J.M. Woodley, N. von Solms, Comparison of the kinetic promoter piperazine and carbonic anhydrase for CO2 absorption, Energy Procedia 114(2017) 719-725. [59] M.A. Pacheco, S. Kaganoi, G.T. Rochelle, CO2 absorption into aqueous mixtures of diglycolamine® and methyldiethanolamine, Chem. Eng. Sci. 55(21) (2000) 5125-5140. [60] M. Al-Juaied, G.T. Rochelle, Absorption of CO2 in aqueous diglycolamine, Ind. Eng. Chem. Res. 45(8) (2006) 2473-2482. [61] S. Bishnoi, G.T. Rochelle, Thermodynamics of piperazine/methyldiethanolamine/water/carbon dioxide, Ind. Eng. Chem. Res. 41(3) (2002) 604-612. [62] S. Bishnoi, G.T. Rochelle, Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine, AIChE J. 48(12) (2002) 2788-2799. [63] S. Bishnoi, G.T. Rochelle, Absorption of carbon dioxide into aqueous piperazine:Reaction kinetics, mass transfer and solubility, Chem. Eng. Sci. 55(22) (2000) 5531-5543. [64] M.K. Wong, G. Murshid, M.A. Bustam, S. Tyutyu, A.M. Shariff, Solubility of carbon dioxide in piperazine-activated methyldiethamolamine and 2-amino-2-methyl-1-propanol, J. Appl. Sci. 14(22) (2014) 3114-3117. [65] L. Dubois, D. Thomas, Carbon dioxide absorption into aqueous amine based solvents:Modeling and absorption tests, Energy Procedia 4(2011) 1353-1360. [66] I. Kim, X. Ma, J.-P. Andreassen, Study of the solid-liquid solubility in the piperazineH2O-CO2 system using FBRM and PVM, Energy Procedia 23(2012) 72-81. [67] L. Li, A.K. Voice, H. Li, O. Namjoshi, T. Nguyen, Y. Du, G.T. Rochelle, Amine blends using concentrated piperazine, Energy Procedia 37(2013) 353-369. [68] D. Aaron, C. Tsouris, Separation of CO2 from flue gas:A review, Sep. Sci. Technol. 40(1-3) (2005) 321-348. [69] A.A.Olajire,CO2 capture and separation technologiesforend-of-pipe applications-A review, Energy 35(6) (2010) 2610-2628. [70] B. Hamah-Ali, B.S. Ali, R. Yusoff, M.K. Aroua, Corrosion of carbon steel in aqueous carbonated solution of MEA/[bmim] [DCA], Int. J. Electrochem. Sci. 6(2011) 181-198. [71] J. Kittel, E. Fleury, B. Vuillemin, S. Gonzalez, F. Ropital, R. Oltra, Corrosion in alkanolamine used for acid gas removal:From natural gas processing to CO2 capture, Mater. Corros. 63(3) (2012) 223-230. [72] B.S. Ali, B.H. Ali, R. Yusoff, M.K. Aroua, Carbon steel corrosion behaviors in carbonated aqueous mixtures of monoethanolamine and 1-n-butyl-3-methylimidazolium tetrafluoroborate, Int. J. Electrochem. Sci. 7(2012) 3835-3853. [73] J. Kittel, S. Gonzalez, Corrosion in CO2 post-combustion capture with Alkanolamines-A review, Oil Gas Sci. Technol.-Rev. IFP Energies Nouvelles 69(5) (2014) 915-929. [74] N. Kladkaew, R. Idem, P. Tontiwachwuthikul, C. Saiwan, Corrosion behavior of carbon steel in the monoethanolamine-H2O-CO2-O2-SO2 system, Ind. Eng. Chem. Res. 48(19) (2009) 8913-8919. [75] R.B. Nielsen, K.R. Lewis, J.G. McCullough, D.A. Hansen, Controlling corrosion in amine treating plants, Proceedings of the Laurance Reid Gas Conditioning Conference, Norman, Oklahoma, 1985. [76] R.J.B. Wagner, Fundamentals-Gas sweetening, Proceedings of the 56th Laurance Reid Gas Conditioning Conference, Norman, 2006. [77] Y. Xiang, M. Yan, Y.-S. Choi, D. Young, S. Nesic, Time-dependent electrochemical behavior of carbon steel in MEA-based CO2 capture process, International Journal of Greenhouse Gas Control 30(2014) 125-132. [78] A. Veawab, P. Tontiwachwuthikul, A. Chakma, Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions, Ind. Eng. Chem. Res. 38(10) (1999) 3917-3924. [79] A. Erfani, S. Boroojerdi, A. Dehghani, M. Yarandi, Investigation of carbon steel and stainless steel corrosion in a MEA based CO2 removal plant, Petroleum & Coal 57(1) (2015) 48-55. [80] P. Gunasekaran, A. Veawab, A. Aroonwilas, Corrosivity of single and blended amines in CO2 capture process, Energy Procedia 37(2013) 2094-2099. [81] L. Zheng, N.S. Matin, J. Thompson, J. Landon, N.E. Holubowitch, K. Liu, Understanding the corrosion of CO2-loaded 2-amino-2-methyl-1-propanol solutions assisted by thermodynamic modeling, International Journal of Greenhouse Gas Control 54(2016) 211-218. [82] P. Gunasekaran, Corrosion evaluation for absorption-Based CO2 capture process using single and blended amines, Process Systems Engineering, 206, University of Regina, Regina, Saskatchewan, Canada, 2012. [83] P. Wattanaphan, T. Sema, R. Idem, Z. Liang, P. Tontiwachwuthikul, Effects of flue gas composition on carbon steel (1020) corrosion in MEA-based CO2 capture process, International Journal of Greenhouse Gas Control 19(2013) 340-349. [84] L. Zheng, J. Landon, N. Matin, Z. Li, G. Qi, K. Liu, Corrosion behavior of carbon steel in piperazine solutions for post-combustion CO2 capture, ECS Trans. 61(20) (2014) 81-95. [85] Y.-S. Choi, D. Duan, S. Nešić, F. Vitse, S.A. Bedell, C. Worley, Effect of oxygen and heat stable salts on the corrosion of carbon steel in MDEA-based CO2 capture process, Corrosion 66(12) (2010)125004-125004-10. [86] M. Gupta, S.J. Vevelstad, H.F. Svendsen, Mechanisms and reaction pathways in MEA degradation; A computational study, Energy Procedia 63(2014) 1115-1121. [87] S.B. Fredriksen, K.-J. Jens, Oxidative degradation of aqueous amine solutions of MEA, AMP, MDEA, Pz:A Review, Energy Procedia 37(2013) 1770-1777. [88] S.J. Vevelstad, I. Eide-Haugmo, E.F. da Silva, H.F. Svendsen, Degradation of MEA; a theoretical study, Energy Procedia 4(2011) 1608-1615. [89] A. Veawab, P. Tontiwachwuthikul, S.D. Bhole, Studies of corrosion and corrosion control in a CO2-2-amino-2-methyl-1-propanol (AMP) environment, Ind. Eng. Chem. Res. 36(1) (1997) 264-269. [90] Z. Zhang, Y. Li, W. Zhang, J. Wang, M.R. Soltanian, A.G. Olabi, Effectiveness of amino acid salt solutions in capturing CO2:A review, Renew. Sust. Energ. Rev. 98(2018) 179-188. [91] A.F. Ciftja, A. Hartono, H.F. Svendsen, Selection of amine amino acids salt systems for CO2 capture, Energy Procedia 37(2013) 1597-1604. [92] S. Matsunaga, Molecular dynamics study on carbon dioxide absorbed potassium glycinate aqueous solution, J. Solut. Chem. 46(12) (2017) 2268-2280. [93] R. Shao, A. Stangeland, Amines Used in CO2 Capture-Health and Environmental Impacts, The Bellona Foundation, Oslo, Norway, 2009. [94] I. Eide-Haugmo, O.G. Brakstad, K.A. Hoff, K.R. Sørheim, E.F. da Silva, H.F. Svendsen, Environmental impact of amines, Energy Procedia 1(1) (2009) 1297-1304. [95] F. He, T. Wang, M. Fang, Z. Wang, H. Yu, Q. Ma, Screening test of amino acid salts for CO2 absorption at flue gas temperature in a membrane contactor, Energy Fuel 31(1) (2017) 770-777. [96] H. Lepaumier, S. Martin, D. Picq, B. Delfort, P.-L. Carrette, New amines for CO2 capture. III. Effect of alkyl chain length between amine functions on polyamines degradation, Industrial & Engineering Chemistry Research 49(10) (2010) 4553-4560. [97] M.E. Majchrowicz, D.W.F. Brilman, M.J. Groeneveld, Precipitation regime for selected amino acid salts for CO2 capture from flue gases, Energy Procedia 1(1) (2009) 979-984. [98] X. Wang, B. Li, in:F. Shi, B. Morreale (Eds.), Chapter 1-Phase-change solvents for CO2 Capture, in Novel Materials for Carbon Dioxide Mitigation Technology, Elsevier, Amsterdam 2015, pp. 3-22. [99] E. Sanchez-Fernandez, F.d.M. Mercader, K. Misiak, L. van der Ham, M. Linders, E. Goetheer, New process concepts for CO2 capture based on precipitating amino acids, Energy Procedia 37(2013) 1160-1171. [100] B.M. Lerche, E.H. Stenby, K. Thomsen, CO2 capture from flue gas using amino acid salt solutions, PhD Thesis, Danmarks Tekniske Universitet, Denmark, 2012. [101] E. Sanchez-Fernandez, K. Heffernan, L. van der Ham, M.J.G. Linders, E.L.V. Goetheer, T.J.H. Vlugt, Precipitating amino acid solvents for CO2 capture. Opportunities to Reduce Costs in Post Combustion Capture, Energy Procedia 63(2014) 727-738. [102] S. Moioli, G. Lodi, L. Pellegrini, M. Ho, W. D., Amino acid based solvent vs. traditional amine solvent:a comparison, Chemical Engineering Transactions 69(2018) 157-162. [103] T. Spietz, S. Dobras, L. Więcław-Solny, A. Krótki, Nitrosamines and nitramines in carbon capture plants, Environmental Protection and Natural Resources 28(4) (2017) 43-50. [104] E.D. Wagner, J. Osiol, W.A. Mitch, M.J. Plewa, Comparative in vitro toxicity of nitrosamines and nitramines associated with amine-based carbon capture and storage, Environmental Science & Technology 48(14) (2014) 8203-8211. [105] K. Yu, W.A. Mitch, N. Dai, Nitrosamines and nitramines in amine-based carbon dioxide capture systems:Fundamentals, engineering implications, and knowledge gaps, Environmental Science & Technology 51(20) (2017) 11522-11536. [106] I. Jevremović, V. Misković-Stanković, The Inhibitive effect of ethanolamine on corrosion behavior of aluminium in NaCl solution saturated with CO2, Metallurgical & Materials Engineering 18(4) (2012) 241-257. [107] K.T. Kim, Y.S. Kim, H.Y. Chang, B.T. Lim, H.B. Park, Effect of ethanolamines on corrosion inhibition of ductile cast Iron in nitrite containing solutions, Corrosion Science and Technology 15(4) (2016) 171-181. |