[1] L.X. Kang, Y.Z. Liu, A systematic strategy for multi-period heat exchanger network retrofit under multiple practical restrictions, Chin. J. Chem. Eng. 25(8) (2017) 1043-1051. [2] N. Jiang, W.Q. Han, F.Y. Guo, et al., A novel heat exchanger network retrofit approach based on performance reassessment, Energy Convers. Manag. 117(2018) 477-492. [3] L. Xia, Y.L. Feng, X.Y. Sun, et al., A novel method based on entransy theory for setting energy targets of heat exchanger network, Chin. J. Chem. Eng. 25(8) (2017) 1037-1042. [4] L. Xia, Y.L. Feng, X.Y. Sun, et al., Design of heat exchanger network based on entransy theory, Chin. J. Chem. Eng. 26(8) (2018) 1692-1699. [5] B. Linnhoff, E. Hindmarsh, The pinch design method for heat exchanger networks, Chem. Eng. Sci. 38(5) (1983) 745-763. [6] A. Yang, S. Jin, W.F. Shen, et al., Investigation of energy-saving Azeotropic dividing wall column to achieve cleaner production via heat exchanger network and heat pump technique, J. Clean. Prod. 234(2019) 410-422. [7] C.L. Yan, A. Yang, I.L. Chien, et al., Advanced exergy analysis of organic Rankine cycles for Fischer-Tropsch syngas production with parallel dry and steam methane reforming, Energy Convers. Manag. 199(2019) 111963. [8] V.C. Onishi, M.A.S.S. Ravagnani, L. Jimenez, J.A. Caballero, Multi-objective synthesis of work and heat exchange networks:Optimal balance between economic and environmental performance, Energy Convers. Manag. 140(2017) 192-202. [9] Y.L. Huang, L.T. Fan, Analysis of a work exchanger network, Ind. Eng. Chem. Res. 35(10) (1996) 3528-3538. [10] G.L. Liu, H. Zhou, R. Shen, et al., A graphical method for integrating work exchange network, Appl. Energy 114(2) (2014) 588-599. [11] Y. Zhuang, L.L. Liu, L. Zhang, et al., An upgraded graphical method for the synthesis of direct work exchanger networks, Ind. Eng. Chem. Res. 56(2017) 14304-14315. [12] A. Amini-Rankouhi, Y.L. Huang, Prediction of maximum recoverable mechanical energy via work integration:a thermodynamic modeling and analysis approach, AIChE J. 63(11) (2017) 4814-4826. [13] Y. Zhuang, L.L. Liu, L. Zhang, et al., Direct work exchanger network synthesis of isothermal process based on improved transshipment model, J Taiwan Inst Chem E 81(2017) 295-304. [14] Y. Zhuang, L.L. Liu, J. Du, Direct work exchange network synthesis of isothermal process based on superstructure method, Chem. Eng. Trans. 61(2017) 133-138. [15] M.S. Razib, M.M.F. Hasan, I.A. Karimi, Preliminary synthesis of work exchange networks, Comput. Chem. Eng. 37(1) (2012) 262-277. [16] D.W. Townsend, B. Linnhoff, Heat and power networks in process design. Part I:Criteria for placement of heat engines and heat pumps in process networks, AICHE J. 29(5) (1983) 742-748. [17] A. Aspelund, D.O. Berstad, T. Gundersen, An extended pinch analysis and design procedure utilizing pressure based exergy for sub-ambient cooling, Appl. Therm. Eng. 27(16) (2007) 2633-2649. [18] T. Gundersen, D.O. Berstad, A. Aspelund, Extending pinch analysis and process integration into pressure and fluid phase considerations, Chem. Eng. Trans. 18(2009) 33-38. [19] C. Fu, T. Gundersen, Sub-ambient heat exchanger network design including compressors, Chem. Eng. Sci. 137(2015) 631-645. [20] C. Fu, T. Gundersen, Integrating compressors into heat exchanger networks above ambient temperature, AIChE J. 61(11) (2015) 3770-3785. [21] C. Fu, T. Gundersen, Correct integration of compressors and expanders in above ambient heat exchanger networks, Energy 116(2016) 1282-1293. [22] A. Wechsung, A. Aspelund, T. Gundersen, et al., Synthesis of heat exchanger networks at sub-ambient conditions with compression and expansion of process streams, AIChE J. 57(8) (2011) 2090-2108. [23] V.C. Onishi, M.A.S.S. Ravagnani, J.A. Caballero, Simultaneous synthesis of heat exchanger networks with pressure recovery:Optimal integration between heat and work, AIChE J. 60(3) (2014) 893-908. [24] V.C. Onishi, M.A.S.S. Ravagnani, J.A. Caballero, Simultaneous synthesis of work exchange networks with heat integration, Chem. Eng. Sci. 112(12) (2014) 87-107. [25] K.F. Huang, I.A. Karimi, Work-heat exchanger network synthesis (WHENS), Energy 113(2016) 1006-1017. [26] Y. Zhuang, L.L. Liu, Q.L. Liu, et al., Step-wise synthesis of work exchange networks involving heat integration based on the transshipment model, Chin. J. Chem. Eng. 25(8) (2017) 1052-1060. [27] L.V. Pavão, C.B.B. Costa, M.A.S.S. Ravagnani, A new framework for work and heat exchangenetwork synthesisand optimization, Energy Convers. Manag. 183(2019)36-48. [28] H. Hamedi, I.A. Karimi, T. Gundersen, Simulation-based approach for integrating work within heat exchange networks for sub-ambient processes, Energy Convers. Manag. 203(2020) 112276. [29] S.K. Nair, R.H. Nagesh, I.A. Karimi, Framework for work-heat exchange network synthesis (WHENS), AIChE J. 64(7) (2018) 2472-2485. [30] V.C. Onishi, N. Quirante, M.A.S.S. Ravagnani, et al., Optimal synthesis of work and heat exchangers networks considering unclassified process streams at sub and above-ambient conditions, Appl. Energy 224(2018) 567-581. [31] H.S. Yu, C. Fu, M. Vikse, et al., Identifying optimal thermodynamic paths in work and heat exchange network synthesis, AIChE J. (2018) https://doi.org/10.1002/aic.16437. [32] C. Fu, T. Gundersen, Heat and work integration:Fundamental insights and applications to carbon dioxide capture processes, Energy Convers. Manag. 121(2016) 36-48. [33] T.F. Yee, I.E. Grossmann, Simultaneous optimization models for heat integration-II. Heat exchanger network synthesis, Comput. Chem. Eng. 14(10) (1990) 1165-1184. [34] C. Fu, T. Gundersen, Sub-ambient heat exchanger network design including expanders, Chem. Eng. Sci. 138(2015) 712-729. [35] C. Fu, T. Gundersen, Integrating expanders into heat exchanger networks above ambient temperature, AIChE J. 61(10) (2015) 3404-3422. |