[1] W. Brostow, H.E.H. Lobland, Materials:Introduction and Applications, John Wiley & Sons, 2016. [2] J.A. Puertolas, F.J. Pascual, M.J. Martinez-Morlanes, Impact resistance and fractography in ultra high molecular weight polyethylenes, J. Mech. Behav. Biomed. Mater. 30(2014) 111-122. [3] P. Bracco, A. Bellare, A. Bistolfi, S. Affatato, Ultra-high molecular weight polyethylene:Influence of the chemical, physical and mechanical properties on the wear behavior. A Review, Materials 10(7) (2017) 791. [4] S. Kurtz, in:S.M. Kurtz (Ed.), UHMWPE Biomaterials Handbook, 3rd ed.Elsevier, Amsterdam, 2016. [5] F.P. Zaribaf, Medical-grade ultra-high molecular weight polyethylene:past, current and future, Mater. Sci. Technol. 34(16) (2018) 1940-1953. [6] P. Massin, S. Achour, Wear products of total hip arthroplasty:the case of polyethylene, Morphologie 101(332) (2017) 1-8. [7] D.L.P. Macuvele, J. Nones, J.V. Matsinhe, M.M. Lima, C. Soares, M.A. Fiori, H.G. Riella, Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications:a brief review, Mater. Sci. Eng. C Mater. Biol. Appl. 76(2017) 1248-1262. [8] M.G. Mohamed, S.W. Kuo, Functional polyimide/polyhedral oligomeric silsesquioxane nanocomposites, Polymers 11(1) (2019) 26. [9] M.G. Mohamed, S.W. Kuo, Functional silica and carbon nanocomposites based on polybenzoxazines, Macromol. Chem. Phys. 220(1) (2019) 1800306. [10] K. Friedrich, Z. Zhang, A. Schlarb, Effects of various fillers on the sliding wear of polymer composites, Compos. Sci. Technol. 65(15-16) (2005) 2329-2343. [11] B.R. Jennings, K. Parslow, Particle size measurement:the equivalent spherical diameter, Proc. R. Soc. Lond. 419(1856) (1988) 137-149. [12] S. Sharma, J. Bijwe, S. Panier, M. Sharma, Abrasive wear performance of SiCUHMWPE nano-composites-influence of amount and size, Wear 332-333(2015) 863-871. [13] S. Basavarajappa, A.G. Joshi, K.V. Arun, A.P. Kumar, M.P. Kumar, Three-body abrasive Wear behaviour of polymer matrix composites filled with SiC particles, Polym.-Plast. Technol. Eng. 49(1) (2010) 8-12. [14] A. Huang, R. Su, Y. Liu, Effects of a coupling agent on the mechanical and thermal properties of ultrahigh molecular weight polyethylene/nano silicon carbide composites, J. Appl. Polym. Sci. 129(3) (2013) 1218-1222. [15] A.J.K. Prasad, H.S. Yeshvantha, T. Chandrakant Ashok, G. Jagannadh, Basavaraj, Studies on the wear characteristics of ultra high molecular weight polyethylene (UHMWPE) polymer nanocomposites containing nano zinc oxide, Mater. Today Proc. 5(1) (2018) 2619-2626. [16] S. Sharma, J. Bijwe, S. Panier, Assessment of potential of nano and micro-sized boron carbide particles to enhance the abrasive wear resistance of UHMWPE, Compos. Part B 99(2016) 312-320. [17] B.-P. Chang, H.Md. Akil, R.Bt.Md. Nasir, Comparative study of micro-and nano-ZnO reinforced UHMWPE composites under dry sliding wear, Wear 297(1-2) (2013) 1120-1127. [18] Q. Wang, Q. Xue, H. Liu, W. Shen, J. Xu, The effect of particle size of nanometer ZrO2 on the tribological behaviour of PEEK, Wear 198(1-2) (1996) 216-219. [19] J.P. Rao, K.E. Geckeler, Polymer nanoparticles:preparation techniques and size-control parameters, Prog. Polym. Sci. 36(7) (2011) 887-913. [20] S.K. Kumar, N. Jouault, B. Benicewicz, T. Neely, Nanocomposites with polymer grafted nanoparticles, Macromolecules 46(9) (2013) 3199-3214. [21] C.Z. Liu, L.Q. Ren, R.D. Arnell, J. Tong, Abrasive wear behavior of particle reinforced ultrahigh molecular weight polyethylene composites, Wear 225-229(1) (1999) 199-204. [22] M. Jeandin, J.M. Durand, M. Vardavoulias, Role of reinforcing ceramic particles in the wear behaviour of polymer-based model composites, Wear 181-183(1995) 833-839. [23] X. Hu, On the size effect of molybdenum disulfide particles on tribological performance, Ind. Lubr. Tribol. 57(6) (2005) 255-259. [24] D. Brown, V. Marcadon, P. Mele, N. Alberola, Effect of filler particle size on the properties of model nanocomposites, Macromolecules 41(4) (2008) 1499-1511. [25] C.T. Lu, A. Weerasinghe, D. Maroudas, A. Ramasubramaniam, A comparison of the elastic properties of graphene-and fullerene-reinforced polymer composites:the role of filler morphology and size, Sci. Rep. 6(2016) 31735. [26] M. Mermet-Guyennet, M. Dinkgreve, M. Habibi, N. Martzel, R. Sprik, M. Denn, D. Bonn, Dependence of nonlinear elasticity on filler size in composite polymer systems, Rheol. Acta 56(6) (2017) 583-589. [27] M.K.H. Bhuiyan, M.M. Rahman, M.F. Mina, M.R. Islam, M.A. Gafur, A. Begum, Crystalline morphology and properties of multi-walled carbon nanotube filled isotactic polypropylene nanocomposites:influence of filler size and loading, Compos. A:Appl. Sci. Manuf. 52(2013) 70-79. [28] N. Ning, S. Fu, W. Zhang, F. Chen, K. Wang, H. Deng, Q. Zhang, Q. Fu, Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization, Prog. Polym. Sci. 37(10) (2012) 1425-1455. [29] D.I. Bower, An Introduction to Polymer Physics, Cambridge Univ. Press, Cambridge, 2002. [30] B. Wunderlich, Macromolecular physics, Elsevier, 2012. [31] N.K. Myshkin, M.I. Petrokovets, A.V. Kovalev, Tribology of polymers:adhesion, friction, wear, and mass-transfer, Tribol. Int. 38(11-12) (2005) 910-921. [32] H. Czichos, Tribology:A Systems Approach to the Science and Technology of Friction, Lubrication, and Wear, Elsevier, 2009 Cambridge Univ. Press, Cambridge, 2002. [33] R.J. Iwanowski, K. Fronc, W. Paszkowicz, M. Heinonen, XPS and XRD study of crystalline 3C-SiC grown by sublimation method, J. Alloys Compd. 286(1) (1999) 143-147. [34] P. Majewski, N.R. Choudhury, D. Spori, E. Wohlfahrt, M. Wohlschloegel, Synthesis and characterisation of star polymer/silicon carbide nanocomposites, Mater. Sci. Eng. A 434(1-2) (2006) 360-364. [35] K. Kamitani, M. Grimsditch, J.C. Nipko, C.K. Loong, M. Okada, I. Kimura, The elastic constants of silicon carbide:a Brillouin-scattering study of 4H and 6H SiC single crystals, J. Appl. Phys. 82(6) (1997) 3152-3154. [36] P.V. Antunes, A. Ramalho, E.V.P. Carrilho, Mechanical and wear behaviours of nano and microfilled polymeric composite:effect of filler fraction and size, Mater. Des. 61(2014) 50-60. [37] P. Bhimaraj, D. Burris, W.G. Sawyer, C.G. Toney, R.W. Siegel, L.S. Schadler, Tribological investigation of the effects of particle size, loading and crystallinity on poly(ethylene) terephthalate nanocomposites, Wear 264(7-8) (2008) 632-637. [38] H.J.S, G. Box, G. Hunter W., J. Hunter, Statistics for Experiments, Wiley, Hoboken, NJ, USA, 2005. [39] A. Buford, T. Goswami, Review of wear mechanisms in hip implants:paper I-general, Mater. Des. 25(5) (2004) 385-393. [40] K. Yamamoto, A. Imakiire, T. Masaoka, T. Shishido, T. Mizoue, I.C. Clarke, H. Shoji, K. Kawanabe, J. Tamura, Wear mode and wear mechanism of retrieved acetabular cups, Int. Orthop. 27(5) (2003) 286-290. [41] G.R. Strobl, W. Hagedorn, Raman spectroscopic method for determining the crystallinity of polyethylene, J. Polym. Sci. Polym. Phys. Ed. 16(7) (1978) 1181-1193. [42] R. Mutter, W. Stille, G. Strobl, Transition regions and surface melting in partially crystalline polyethylene:a raman spectroscopic study, J. Polym. Sci. B Polym. Phys. 31(1) (1993) 99-105. [43] D. Barron, C. Birkinshaw, Ultra-high molecular weight polyethylene-evidence for a three-phase morphology, Polymer 49(13-14) (2008) 3111-3115. [44] V. Premnath, W.H. Harris, M. Jasty, E.W. Merrill, Gamma sterilization of UHMWPE articular implants:an analysis of the oxidation problem, Biomaterials 17(18) (1996) 1741-1753. [45] P.J. Flory, On the morphology of the crystalline state in polymers, J. Am. Chem. Soc. 84(1962) 2857-2867. [46] Lev Mandelkern, The structure of crystalline polymers, Acc. Chem. Res. 23(11) (1990) 380-386. [47] B. Wunderlich, G. Czornyj, A study of equilibrium melting of polyethylene, Macromolecules 10(5) (1977) 906-913. [48] S. Andjelić, R.E. Richard, Crystallization behavior of ultrahigh molecular weight polyethylene as a function of in vacuo irradiation, Macromolecules 34(4) (2001) 896-906. [49] A.L. Patterson, The Scherrer formula for X-ray particle size determination, Phys. Rev. 56(10) (1939) 978-982. [50] M. Dermeneva, E. Ivan'kova, V. Marikhin, L. Myasnikova, M. Yagovkina, E. Radovanova, X-ray analysis of compacted and sintered UHMWPE reactor powders, J. Phys. Conf. Ser. 1038(2018), 012058. [51] W. Lin, M. Cossar, V. Dang, J. Teh, The application of Raman spectroscopy to threephase characterization of polyethylene crystallinity, Polym. Test. 26(6) (2007) 814-821. [52] W. Pang, Z. Ni, G. Chen, G. Huang, H. Huang, Y. Zhao, Mechanical and thermal properties of graphene oxide/ultrahigh molecular weight polyethylene nanocomposites, RSC Adv. 5(77) (2015) 63063-63072. [53] R.J. Gayload, D.J. Lohse, Morphological changes during oriented polymer crystallization, Polym. Eng. Sci. 16(3) (1976) 163-167. [54] Z. Wang, W.-H. Wang, Flow units as dynamic defects in metallic glassy materials, Natl. Sci. Rev. 6(2) (2019) 304-323. [55] R.S. Lenk, Polymer Rheology, Applied Science Publishers Ltd., London, 1978. [56] Q. Zheng, B.-B. Yang, G. Wu, L.-W. Li, A study of dynamic rheology for multicomponent polymers, 9, Chemical Research in Chinese Universities, 19991483-1490. [57] X. Wang, Q. Wu, Z. Qi, Unusual rheology behaviour of ultra high molecular weight polyethylene/kaolin composites prepared via polymerization-filling, Polym. Int. 52(7) (2003) 1078-1082. [58] Q. Zhang, D.R. Lippits, S. Rastogi, Dispersion and rheological aspects of SWNTs in ultrahigh molecular weight polyethylene, Macromolecules 39(2) (2006) 658-666. [59] K. Liu, S. Ronca, E. Andablo-Reyes, G. Forte, S. Rastogi, Unique rheological response of ultrahigh molecular weight Polyethylenes in the presence of reduced graphene oxide, Macromolecules 48(1) (2015) 131-139. [60] D.H. Chang, H.E. Chuang, Criteria for rheological compatibility of polymer blends, J. Appl. Polym. Sci. 30(11) (1985) 4431-4454. [61] H. Wang, X. Yang, Z. Fu, X. Zhao, Y. Li, J. Li, Rheology of nanosilica-compatibilized immiscible polymer blends:formation of a "heterogeneous network" facilitated by interfacially anchored hybrid nanosilica, Macromolecules 50(23) (2017) 9494-9506. [62] L.H. Wang, R.S. Porter, H.D. Stidham, S.L. Hsu, Raman spectroscopic characterization of the morphology of polyethylene reactor powder, Macromolecules 24(20) (1991) 5535-5538. [63] S. Gautam, S. Balijepalli, G.C. Rutledge, Molecular simulations of the Interlamellar phase in polymers:effect of chain tilt, Macromolecules 33(24) (2000) 9136-9145. [64] Y. Hiejima, T. Kida, K. Takeda, T. Igarashi, K.H. Nitta, Microscopic structural changes during photodegradation of low-density polyethylene detected by Raman spectroscopy, Polym. Degrad. Stab. 150(2018) 67-72. [65] Z. Li, C. Ye, L. Feng, J. Xia, L. Zhang, W. Zhao, Y. Hu, Crystal morphology and corresponding physical properties of nascent ultra-high molecular weight polyethylene powder with short-branched chains, Polymer 181(2019) 121758. [66] H. Zhang, S. Zhao, X. Yu, Z. Xin, C. Ye, Z. Li, J. Xia, Nascent particle sizes and degrees of entanglement are responsible for the significant differences in impact strength of ultrahigh molecular weight polyethylene, J. Polym. Sci. B Polym. Phys. 57(10) (2019) 632-641. [67] H. Zhang, S. Zhao, Z. Xin, C. Ye, Z. Li, J. Xia, Wear resistance mechanism of ultrahighmolecular-weight polyethylene determined from its structure-property relationships, Ind. Eng. Chem. Res. 58(42) (2019) 19519-19530. [68] M.J. Gall, P.J. Hendra, O.J. Peacock, M.E.A. Cudby, H.A. Willis, The laser-Raman spectrum of polyethylene:the assignment of the spectrum to fundamental modes of vibration, Spectrochim. Acta A Mol. Spectrosc. 28(8) (1972) 1485-1496. [69] P. Sae-oui, C. Sirisinha, U. Thepsuwan, K. Hatthapanit, Roles of silane coupling agents on properties of silica-filled polychloroprene, Eur. Polym. J. 42(3) (2006) 479-486. [70] S. Shokoohi, A. Arefazar, R. Khosrokhavar, Silane coupling agents in polymer-based reinforced composites:a review, J. Reinf. Plast. Compos. 27(5) (2008) 473-485. [71] P.K. Pal, S.N. Chakravarty, S.K. De, Effect of clay on vulcanization, network structure, and technical properties of natural rubber in the presence of silane coupling agents, J. Appl. Polym. Sci. 28(2) (1983) 659-683. [72] S.R. Davis, A.R. Brough, A. Atkinson, Formation of silica/epoxy hybrid network polymers, J. Non-Cryst. Solids 315(2003) 197-205. [73] R.D. Carnahan, Elastic properties of silicon carbide, J. Am. Ceram. Soc. 51(4) (1968) 223-224. [74] D.M. Liu, B.-W. Lin, Thermal conductivity in hot-pressed silicon carbide, Ceram. Int. 22(5) (1996) 407-414. [75] J. Labanda, J. Llorens, A structural model for thixotropy of colloidal dispersions, Rheol. Acta 45(3) (2006) 305-314. [76] G. Sutter, N. Ranc, Flash temperature measurement during dry friction process at high sliding speed, Wear 268(11-12) (2010) 1237-1242. [77] S. Wang, S. Ge, The mechanical property and tribological behavior of UHMWPE:effect of molding pressure, Wear 263(7-12) (2007) 949-956. [78] M. Ohta, S.-H. Hyon, S. Tsutumi, Control of crystalline orientation to enhance the wear resistance of ultra-high molecular weight polyethylene crystallization cups for artificial joints, Wear 255(7-12) (2003) 1045-1050. [79] J. Udla, K.-J. Eichhorn, M. Raab, P. Schmidt, D. Jehnichen, L. Huler, The effect of specific nucleation on molecular and supermolecular orientation in isotactic polypropylene, Macromol. Symp. 184(1) (2002) 371-387. [80] J.C. Wittmann, B. Lotz, Polymer decoration:the orientation of polymer folds as revealed by the crystallization of polymer vapors, J. Polym. Sci. Polym. Phys. Ed. 23(1) (1985) 205-226. [81] T. Wang, Z. Wang, C. Wang, Y.-J. Xiao, The size-matching effect in 0.1 Na1/3Ca1/3Bi1/3Cu3Ti4O12-xBa (Fe0.5Nb0.5) O3-(0.9-x) PVDF composites, Ceram. Int. 43(2017) S239-S243. [82] D.W. Van Citters, A.E. Levack, F.E. Kennedy, Wear of highly crystalline ultra-high molecular weight polyethylene, STLE/ASME 2008 International Joint Tribology Conference, American Society of MechanicalEngineers Digital Collection 2008,pp. 135-137. [83] K.S. Simis, A. Bistolfi, A. Bellare, L.A. Pruitt, The combined effects of crosslinking and high crystallinity on the microstructural and mechanical properties of ultra high molecular weight polyethylene, Biomaterials 27(9) (2006) 1688-1694. [84] P.S.M. Barbour, M.H. Stone, J. Fisher, A study of the wear resistance of three types of clinically applied UHMWPE for total replacement hip prostheses, Biomaterials 20(22) (1999) 2101-2106. [85] J.-C. Baena, Z. Peng, Mechanical and tribological performance of UHMWPE influenced by temperature change, Polym. Test. 62(2017) 102-109. [86] R. Royer, Introductory remarks for symposium on transitions and relaxations in polymers, J. Polym. Sci. Part C Polym. Symp. Wiley Online Library (1966) 1-14. [87] M.C. Galetz, U. Glatzel, Molecular deformation mechanisms in UHMWPE during Tribological loading in artificial joints, Tribol. Lett. 38(1) (2010) 1-13. |