中国化学工程学报 ›› 2021, Vol. 29 ›› Issue (1): 1-12.DOI: 10.1016/j.cjche.2020.08.024
• Review • 下一篇
Zhen Chen1,2, Zhongliang Ma1,3, Jie Zheng4, Xingguo Li4, Etsuo Akiba1,5, Hai-Wen Li1,5,6
收稿日期:
2020-05-30
修回日期:
2020-07-21
出版日期:
2021-01-28
发布日期:
2021-04-02
通讯作者:
Hai-Wen Li
基金资助:
Zhen Chen1,2, Zhongliang Ma1,3, Jie Zheng4, Xingguo Li4, Etsuo Akiba1,5, Hai-Wen Li1,5,6
Received:
2020-05-30
Revised:
2020-07-21
Online:
2021-01-28
Published:
2021-04-02
Contact:
Hai-Wen Li
Supported by:
摘要: Hydrogen has been widely considered as a clean energy carrier that bridges the energy producers and energy consumers in an efficient and safe way for a sustainable society. Hydrogen can be stored in a gas, liquid and solid states and each method has its unique advantage. Though compressed hydrogen and liquefied hydrogen are mature technologies for industrial applications, appropriate measures are necessary to deal with the issues at high pressure up to around 100 MPa and low temperature at around 20 K. Distinct from those technologies, storing hydrogen in solid-state hydrides can realize a more compact and much safer approach that does not require high hydrogen pressure and cryogenic temperature. In this review, we will provide an overview of the major material groups that are capable of absorbing and desorbing hydrogen reversibly. The main features on hydrogen storage properties of each material group are summarized, together with the discussion of the key issues and the guidance of materials design, aiming at providing insights for new material development as well as industrial applications.
Zhen Chen, Zhongliang Ma, Jie Zheng, Xingguo Li, Etsuo Akiba, Hai-Wen Li. Perspectives and challenges of hydrogen storage in solid-state hydrides[J]. 中国化学工程学报, 2021, 29(1): 1-12.
Zhen Chen, Zhongliang Ma, Jie Zheng, Xingguo Li, Etsuo Akiba, Hai-Wen Li. Perspectives and challenges of hydrogen storage in solid-state hydrides[J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 1-12.
[1] Renewables Information 2020, Electricity generation from biofuels and waste by source, World 1990-2018. https://www.iea.org/fuels-and-technologies/renewables. [2] Coal production by type, World 1990-2019, International Energy Agency, https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energysupply&indicator=Coalproductionbytype. [3] E. Tzimas, C. Filiou, S.D. Peteves, J. Veyret, Hydrogen Storage:State-of-the-Art and Future Perspective, Office for Official Publications of the European Communities, Luxembourg, 2003. [4] K. Sasaki, H.-W. Li, A. Hayashi, J. Yamabe, T. Ogura, S.M. Lyth, Hydrogen Energy Engineering, Springer, Berlin, 2016. [5] T. He, P. Pachfule, H. Wu, Q. Xu, P. Chen, Hydrogen carriers, Nat. Rev. Mater. 1(2016) 16059. [6] R. Mohtadi, S.I. Orimo, The renaissance of hydrides as energy materials, Nat. Rev. Mater. 2(2016) 1-16. [7] K.T. Møller, T.R. Jensen, E. Akiba, H. wen Li, Hydrogen-a sustainable energy carrier, Prog. Nat. Sci. Mater. Int. 27(2017) 34-40. [8] X. Yu, Z. Tang, D. Sun, L. Ouyang, M. Zhu, Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications, Prog. Mater. Sci. 88(2017) 1-48. [9] A. Schneemann, J.L. White, S. Kang, S. Jeong, L.F. Wan, E.S. Cho, T.W. Heo, D. Prendergast, J.J. Urban, B.C. Wood, M.D. Allendorf, V. Stavila, Nanostructured metal hydrides for hydrogen storage, Chem. Rev. 118(2018) 10775-10839. [10] M. Latroche, D. Blanchard, F. Cuevas, A. El Kharbachi, B.C. Hauback, T.R. Jensen, P.E. de Jongh, S. Kim, N.S. Nazer, P. Ngene, S. ichi Orimo, D.B. Ravnsbæk, V.A. Yartys, Full-cell hydride-based solid-state Li batteries for energy storage, Int. J. Hydrogen Energy 44(2019) 7875-7887. [11] L.H. Jepsen, M.B. Ley, Y.S. Lee, Y.W. Cho, M. Dornheim, J.O. Jensen, Y. Filinchuk, J.E. Jørgensen, F. Besenbacher, T.R. Jensen, Boron-nitrogen based hydrides and reactive composites for hydrogen storage, Mater. Today 17(2014) 129-135. [12] C. Milanese, T.R. Jensen, B.C. Hauback, C. Pistidda, M. Dornheim, H. Yang, L. Lombardo, A. Zuettel, Y. Filinchuk, P. Ngene, P.E. de Jongh, C.E. Buckley, E.M. Dematteis, M. Baricco, Complex hydrides for energy storage, Int. J. Hydrog. Energy 44(2019) 7860-7874. [13] J.W. Makepeace, T. He, C. Weidenthaler, T.R. Jensen, F. Chang, T. Vegge, P. Ngene, Y. Kojima, P.E. de Jongh, P. Chen, W.I.F. David, Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage:recent progress, Int. J. Hydrog. Energy 44(2019) 7746-7767. [14] V.A. Yartys, M.V. Lototskyy, E. Akiba, R. Albert, V.E. Antonov, J.R. Ares, M. Baricco, N. Bourgeois, C.E. Buckley, J.M. Bellosta von Colbe, J.C. Crivello, F. Cuevas, R.V. Denys, M. Dornheim, M. Felderhoff, D.M. Grant, B.C. Hauback, T.D. Humphries, I. Jacob, T.R. Jensen, P.E. de Jongh, J.M. Joubert, M.A. Kuzovnikov, M. Latroche, M. Paskevicius, L. Pasquini, L. Popilevsky, V.M. Skripnyuk, E. Rabkin, M.V. Sofianos, A. Stuart, G. Walker, H. Wang, C.J. Webb, M. Zhu, Magnesium based materials for hydrogen based energy storage:past, present and future, Int. J. Hydrogen Energy 44(2019) 7809-7859. [15] J. Bellosta von Colbe, J.R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, N. Gallandat, D.M. Grant, M.N. Guzik, I. Jacob, E.H. Jensen, T. Jensen, J. Jepsen, T. Klassen, M.V. Lototskyy, K. Manickam, A. Montone, J. Puszkiel, S. Sartori, D.A. Sheppard, A. Stuart, G. Walker, C.J. Webb, H. Yang, V. Yartys, A. Züttel, M. Dornheim, Application of hydrides in hydrogen storage and compression:Achievements, outlook and perspectives, Int. J. Hydrog. Energy 44(2019) 7780-7808. [16] L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications, Nature. 414(2002) 353-358. [17] Course 50, Technologies to reduce CO2 emissions:Hydrogen reduction of iron ore generates H2O instead of CO2, leading to decrease in CO2 emissions, The Japan Iron and Steel Federation, https://www.jisf.or.jp/course50/tecnology01/index_en.html. [18] B.M. Tackett, E. Gomez, J.G. Chen, Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes, Nat. Catal. 2(2019) 381-386. [19] D. Mori, K. Hirose, Recent challenges of hydrogen storage technologies for fuel cell vehicles, Int. J. Hydrog. Energy 34(2009) 4569-4574. [20] 2017 Mirai Product Information, After 20 years of research and development, the car of the future is on the road today, Toyota Company, https://www.toyota. com/mirai/assets/core/Docs/MiraSpecs.pdf. [21] S. Krasae-in, J.H. Stang, P. Neksa, Development of large-scale hydrogen liquefaction processes from 1898 to 2009, Int. J. Hydrog. Energy 35(2010) 4524-4533. [22] K. Matsumoto, T. Kondo, S. Yoshioka, K. Kamiya, T. Numazawa, Magnetic refrigerator for hydrogen liquefaction, J. Phys. Conf. Ser. 150(2009) 2-6. [23] Kawasaki hydrogen road, Paving the way for a hydrogen-based society, Kawasaki Heavy Industries, https://global.kawasaki.com/en/stories/hydrogen/. [24] O. Sultan, H. Shaw, Study of automotive storage of hydrogen using recyclable liquid chemical carriers,[Catalytic dehydrogenation of naphthenes], Exxon Research and Engineering Co., Government Research Lab., Linden, N.J. (USA), 1975 Report No. TEC-75/003. [25] R.H. Crabtree, Hydrogen storage in liquid organic heterocycles, Energy Environ. Sci. 1(2008) 134-138. [26] Q. Zhu, Q. Xu, Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage, Energy Environ. Sci. 8(2015) 478-512. [27] Y. Wu, H. Yu, Y. Guo, X. Jiang, Y. Qi, B. Sun, H. Li, J. Zheng, X. Li, A rare earth hydride supported ruthenium catalyst for the hydrogenation of N-heterocycles:boosting the activity via a new hydrogen transfer path and controlling the stereoselectivity, Chem. Sci. 10(2019) 10459-10465. [28] N. Kariya, A. Fukuoka, T. Utagawa, M. Sakuramoto, Y. Goto, M. Ichikawa, Efficient hydrogen production using cyclohexane and decalin by pulse-spray mode reactor with Pt catalysts, Appl. Catal. A Gen. 247(2003) 247-259. [29] Y. Okada, E. Sasaki, E. Watanabe, S. Hyodo, H. Nishijima, Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method, Int. J. Hydrog. Energy 31(2006) 1348-1356. [30] A. Bourane, M. Elanany, T.V. Pham, S.P. Katikaneni, An overview of organic liquid phase hydrogen carriers, Int. J. Hydrog. Energy 41(2016) 23075-23091. [31] L. Green, An ammonia energy vector for the hydrogen economy, Int. J. Hydrog. Energy 7(1982) 355-359. [32] M. Hattori, S. Iijima, T. Nakao, H. Hosono, Michikazu Hara, Solid solution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50℃, Nat. Commun. 11(2020) 2001-2008. [33] S.F. Yin, B.Q. Xu, X.P. Zhou, C.T. Au, A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications, Appl. Catal. A Gen. 277(2004) 1-9. [34] G. Thomas, G. Parks, Potential Roles of Ammonia in a Hydrogen Economy:A Study of Issues Related to the Use Ammonia for On-Board Vehicular Hydrogen Storage, US Department of Energy, 2006. https://www.energy.gov/sites/prod/files/2015/01/f19/fcto_nh3_h2_storage_white_paper_2006.pdf. [35] H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst. 37(2019) 109-133. [36] M. Kishimoto, H. Muroyama, S. Suzuki, M. Saito, T. Koide, Y. Takahashi, T. Horiuchi, H. Yamasaki, S. Matsumoto, H. Kubo, N. Takahashi, A. Okabe, S. Ueguchi, M. Jun, A. Tateno, T. Matsuo, T. Matsui, H. Iwai, H. Yoshida, K. Eguchi, Development of 1 kWclass ammonia-fueled solid oxide fuel cell stack, Fuel Cell. (2020) 80-88. [37] T.C.M. Chung, Y. Jeong, Q. Chen, A. Kleinhammes, Y. Wu, Synthesis of microporous boron-substituted carbon (B/C) materials using polymeric precursors for hydrogen physisorption, J. Am. Chem. Soc. 130(2008) 6668-6669. [38] P. Bénard, R. Chahine, Modeling of adsorption storage of hydrogen on activated carbons, Int. J. Hydrog. Energy 26(2001) 849-855. [39] D.P. Broom, C.J. Webb, G.S. Fanourgakis, G.E. Froudakis, P.N. Trikalitis, M. Hirscher, Concepts for improving hydrogen storage in nanoporous materials, Int. J. Hydrog. Energy 44(2019) 7768-7779. [40] Z. Chen, P. Li, R. Anderson, X. Wang, X. Zhang, L. Robison, L.R. Redfern, S. Moribe, T. Islamoglu, D.A. Gómez-Gualdrón, T. Yildirim, J.F. Stoddart, O.K. Farha, Balancing volumetric and gravimetric uptake in highly porous materials for clean energy, Science (80-.). 368(2020) 297-303. [41] S. Filippov, J.B. Grinderslev, M.S. Andersson, J. Armstrong, M. Karlsson, T.R. Jensen, J. Klarbring, S.I. Simak, U. Häussermann, Analysis of dihydrogen bonding in ammonium borohydride, J. Phys. Chem. C 123(2019) 28631-28639. [42] D. Karlsson, G. Ek, J. Cedervall, C. Zlotea, K.T. Møller, T.C. Hansen, J. Bednarčík, M. Paskevicius, M.H. Sørby, T.R. Jensen, U. Jansson, M. Sahlberg, Structure and hydrogenation properties of a HfNbTiVZr high-entropy alloy, Inorg. Chem. 57(2018) 2103-2110. [43] A. Züttel, Materials for hydrogen storage, Mater. Today 6(2003) 24-33. [44] M. Dornheim, Thermodynamics of Metal Hydrides:Tailoring Reaction Enthalpies of Hydrogen Storage Materials, Intech Open, 2011. https://doi.org/10.5772/21662. [45] M.B. Ley, L.H. Jepsen, Y.S. Lee, Y.W. Cho, J.M. Bellosta Von Colbe, M. Dornheim, M. Rokni, J.O. Jensen, M. Sloth, Y. Filinchuk, J.E. Jørgensen, F. Besenbacher, T.R. Jensen, Complex hydrides for hydrogen storage-new perspectives, Mater. Today 17(2014) 122-128. [46] D.B. Ravnsbæk, Y. Filinchuk, R. Černý, T.R. Jensen, Powder diffraction methods for studies of borohydride-based energy storage materials, Zeitschrift Fur Krist. 225(2010) 557-569. [47] L.H. Rude, T.K. Nielsen, D.B. Ravnsbæk, U. Bösenberg, M.B. Ley, B. Richter, L.M. Arnbjerg, M. Dornheim, Y. Filinchuk, F. Besenbacher, T.R. Jensen, Tailoring properties of borohydrides for hydrogen storage:a review, Phys. Status Solidi Appl. Mater. Sci. 208(2011) 1754-1773. [48] M. Hirscher, V.A. Yartys, M. Baricco, J. Bellosta von Colbe, D. Blanchard, R.C. Bowman, D.P. Broom, C.E. Buckley, F. Chang, P. Chen, Y.W. Cho, J.C. Crivello, F. Cuevas, W.I.F. David, P.E. de Jongh, R.V. Denys, M. Dornheim, M. Felderhoff, Y. Filinchuk, G.E. Froudakis, D.M. Grant, E.M.A. Gray, B.C. Hauback, T. He, T.D. Humphries, T.R. Jensen, S. Kim, Y. Kojima, M. Latroche, H.W. Li, M.V. Lototskyy, J.W. Makepeace, K.T. Møller, L. Naheed, P. Ngene, D. Noréus, M.M. Nygård, S. ichi Orimo, M. Paskevicius, L. Pasquini, D.B. Ravnsbæk, M. Veronica Sofianos, T.J. Udovic, T. Vegge, G.S. Walker, C.J. Webb, C. Weidenthaler, C. Zlotea, Materials for hydrogen-based energy storage-past, recent progress and future outlook, J. Alloys Compd 827(2020) 1-39. [49] G. Sandrock, G. Thomas, The IEA/DOE/SNL on-line hydride databases, Appl. Phys. A Mater. Sci. Process. 72(2001) 153-155. [50] R.V. Denys, V.A. Yartys, Effect of magnesium on the crystal structure and thermodynamics of the La3-xMgxNi9 hydrides, J. Alloys Compd. 509(2011) 540-548. [51] X.Q. Chen, W. Wolf, R. Podloucky, P. Rogl, Ab initio study of ground-state properties of the Laves phase compounds TiCr2, ZrCr2, and HfCr2, Phys. Rev. B-Condens. Matter Mater. Phys. 71(2005) 1-11. [52] S. Corporation, A.M. Science, Rare earths crucial elements of advanced technologies, Mater. Matters. 6(2011) 29-60. [53] K. Young, Metal Hydrides, Elsevier Inc., 2018 [54] G. Mazzolai, B. Coluzzi, A. Biscarini, F.M. Mazzolai, A. Tuissi, F. Agresti, S. Lo Russo, A. Maddalena, P. Palade, G. Principi, Hydrogen-storage capacities and H diffusion in bcc TiVCr alloys, J. Alloys Compd. 466(2008) 133-139. [55] H. Zijlstra, F.F. Westendorp, Influence of hydrogen on the magnetic properties of SmCo5, Solid State Commun. 7(1969) 857-859. [56] L. Schlapbach, C.R. Brundle, XPS study of the chemisorption induced surface segregation in LaNi5 and ThNi5, J. Phys. Fr. 42(1981) 1025-1028. [57] G. Sandrock, State-of-the-Art Review of Hydrogen Storage in Reversible Metal Hydrides for Military Fuel Cell Applications, Sunatech, Inc., NJ, USA, 1997. [58] K. Nii, M. Amano, R & D of hydrogen absorbing alloys in Japan, Acta Metall. Sin. 10(1997) 249-255. [59] H. Li, K. Ikeda, Y. Nakamori, S. Orimo, K. Yakushiji, K. Takanashi, Size distribution of precipitated Ni clusters on the surface of an alkaline-treated LaNi5-based alloy, Acta Mater. 55(2007) 481-485. [60] Y. Liu, H. Pan, M. Gao, Q. Wang, Advanced hydrogen storage alloys for Ni/MH rechargeable batteries, J. Mater. Chem. 21(2011) 4743-4755. [61] J.R. Johnson, James J. Reilly, Reaction of hydrogen with the low-temperature form (C15) of TiCr2, Inorg. Chem. 17(1978) 3103-3108. [62] T. Yamashita, T. Gamo, Y. Moriwaki, M. Fukuda, Hydride formation of Ti-Mn binary alloys, J. Japan Inst. Met. 41(1977) 148-154. [63] J.J.R.R.H. Wiswall, Formation and properties of iron titanium hydride, Inorg. Chem. 13(1974) 218-222. [64] G.K. Sujan, P. Zengxi, L. Huijun, L. Daniel, A. Nazmul, An overview on TiFe intermetallic for solid-state hydrogen storage:microstructure, hydrogenation and fabrication processes, Crit. Rev. Solid State Mater. Sci. (2019) 1-18. [65] A. You, M.A.Y. Be, I. In, Mechanism of activation of TiFe intermetallics for hydrogen storage by severe plastic deformation using high-pressure torsion, Appl. Phys. Lett. 103(2013) 143902. [66] K. Kadir, T. Sakai, I. Uehara, Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9(R_La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers, J. Alloys Compd. 257(1997) 115-121. [67] T. Kohno, H. Yoshida, F. Kawashima, T. Inaba, I. Sakai, M. Yamamoto, M. Kanda, Hydrogen storage properties of new ternary system alloys:La2MgNi9, La5Mg2Ni23, La3MgNi14, J. Alloys Compd. 311(2000) 5-7. [68] E. Akiba, M. Okada, Metallic hydrides Ⅲ:body-centered-cubic solid-solution alloys, MRS Bull. 27(2002) 699-703. [69] X.B. Yu, Z. Wu, B.J. Xia, N.X. Xu, Enhancement of hydrogen storage capacity of Ti-VCr-Mn BCC phase alloys, J. Alloys Compd. 372(2004) 272-277. [70] E. Akiba, H. Iba, Hydrogen absorption by Laves phase related BCC solid solution, Intermetallics. 6(1998) 461-470. [71] H.H. Van Mal, K.H.J. Buschow, A.R. Miedema, Hydrogen absorption in LaNi5 and related compounds:experimental observations and their explanation, J. LessCommon Met. 35(1974) 65-76. [72] Y. Osumi, A. Kato, K. Oguro, H. Suzuki, S. Kawai, M. Kaneko, Hydrogen absorption desorption characteristics of Mm-Ni-Al-M and Mm-Ni-Mn-M alloys (Mm=Mischmetal), J. Less Common Met. 89(1983) 287-292. [73] F. Cuevas, J.M. Joubert, M. Latroche, A. Percheron-Guégan, Intermetallic compounds as negative electrodes of Ni/MH batteries, Appl. Phys. A Mater. Sci. Process. 72(2001) 225-238. [74] Y. Nakamura, E. Akiba, Hydriding properties and crystal structure of NaCl-type mono-hydrides formed from Ti-V-Mn BCC solid solutions, J. Alloys Compd. 345(2002) 175-182. [75] M. Sahlberg, D. Karlsson, C. Zlotea, U. Jansson, Superior hydrogen storage in high entropy alloys, Sci. Rep. 6(2016) 36770. [76] P. Edalati, R. Floriano, A. Mohammadi, Y. Li, G. Zepon, H.W. Li, K. Edalati, Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi, Scr. Mater. 178(2020) 387-390. [77] H. Saitoh, S. Kato, M. Katagiri, Hydrogenation of anodized aluminum and crystal growth of formed hydride at high pressure and high temperature, Mater. Trans. 55(2014) 1114-1116. [78] A. Gutowska, L. Li, Y. Shin, C.M. Wang, X.S. Li, J.C. Linehan, R.S. Smith, B.D. Kay, B. Schmid, W. Shaw, M. Gutowski, T. Autrey, Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane, Angew. Chemie-Int. Ed. 44(2005) 3578-3582. [79] R.K. Bhakta, S. Maharrey, V. Stavila, A. Highley, T. Alam, E. Majzoub, M. Allendorf, Thermodynamics and kinetics of NaAlH4 nanocluster decomposition, Phys. Chem. Chem. Phys. 14(2012) 8160-8169. [80] Y. Song, Z.X. Guo, Electronic structure, stability and bonding of the Li-N-H hydrogen storage system, Phys. Rev. B-Condens. Matter Mater. Phys. 74(2006) 1-7. [81] C.M. Araújo, R.H. Scheicher, R. Ahuja, Thermodynamic analysis of hydrogen sorption reactions in Li-Mg-N-H systems, Appl. Phys. Lett. 92(2008) 2006-2009. [82] P. Mauron, F. Buchter, O. Friedrichs, A. Remhof, M. Bielmann, C.N. Zwicky, A. Züttel, Stability and reversibility of LiBH4, J. Phys. Chem. B 112(2008) 906-910. [83] H.W. Li, K. Kikuchi, Y. Nakamori, N. Ohba, K. Miwa, S. Towata, S. Orimo, Dehydriding and rehydriding processes of well-crystallized Mg(BH4)2 accompanying with formation of intermediate compounds, Acta Mater. 56(2008) 1342-1347. [84] T.E.C. Price, D.M. Grant, I. Telepeni, X.B. Yu, G.S. Walker, The decomposition pathways for LiBD4-MgD2 multicomponent systems investigated by in situ neutron diffraction, J. Alloys Compd. 472(2009) 559-564. [85] J. Zhang, S. Li, Y. Zhu, H. Lin, Y. Liu, Y. Zhang, Z. Ma, L. Li, Controllable fabrication of Ni-based catalysts and their enhancement on desorption properties of MgH2, J. Alloys Compd. 715(2017) 329-336. [86] E. Grigorova, M. Khristov, M. Khrussanova, P. Peshev, Addition of 3d-metals with formation of nanocomposites as a way to improve the hydrogenation characteristics of Mg2Ni, J. Alloys Compd. 414(2006) 298-301. [87] B. Bogdanović, M. Schwickardi, Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials, J. Alloys Compd. 253-254(1997) 1-9. [88] B. Bogdanović, M. Felderhoff, A. Pommerin, F. Schüth, N. Spielkamp, Advanced hydrogen-storage materials based on So, Ce-, and Pr-doped NaAlH4, Adv. Mater. 18(2006) 1198-1201. [89] Y. Liu, Z. Ren, X. Zhang, N. Jian, Y. Yang, M. Gao, H. Pan, Development of catalyst-enhanced sodium alanate as an advanced hydrogen-storage material for mobile applications, Energy Technol. 6(2018) 487-500. [90] S.S. Srinivasan, H.W. Brinks, B.C. Hauback, D. Sun, C.M. Jensen, Long term cycling behavior of titanium doped NaAlH4 prepared through solvent mediated milling of NaH and Al with titanium dopant precursors, J. Alloys Compd. 377(2004) 283-289. [91] C. Na Ranong, M. Höhne, J. Franzen, J. Hapke, G. Fieg, M. Dornheim, N. Eigen, J.M. Bellosta von Colbe, O. Metz, Concept, design and manufacture of a prototype hydrogen storage tank based on sodium alanate, Chem. Eng. Technol. 32(2009) 1154-1163. [92] K. Law, J. Rosenfeld, V. Han, M. Chan, H. Chiang, J. Leonard, U.S. Department of Energy Hydrogen Storage Cost Analysis, 2013-03-117, https://digital.library.unt.edu/ark:/67531/metadc827980/. [93] C. Ping, X. Zhitao, L. Jizhong, L. Jianyi, T. Kuang Lee, Interaction of hydrogen with metal nitrides and imides, Nature. 420(2002) 20-22. [94] J. Wang, H.W. Li, P. Chen, Amides and borohydrides for high-capacity solid-state hydrogen storage-materials design and kinetic improvements, MRS Bull. 38(2013) 480-487. [95] H. Wang, G. Wu, H. Cao, C. Pistidda, A.L. Chaudhary, S. Garroni, M. Dornheim, P. Chen, Near ambient condition hydrogen storage in a synergized tricomponent hydride system, Adv. Energy Mater. 7(2017) 1-7. [96] Y. Nakamori, G. Kitahara, A. Ninomiya, M. Aoki, T. Noritake, S.I. Towata, S.I. Orimo, Guidelines for developing amide-based hydrogen storage materials, Mater. Trans. 46(2005) 2093-2097. [97] S. Isobe, T. Ichikawa, H. Fujii, Light metal amide/imide systems for on-board hydrogen storage materials, J. Japan Inst. Met. 70(2006) 865-869. [98] J. Wang, T. Liu, G. Wu, W. Li, Y. Liu, C.M. Araújo, R.H. Scheicher, A. Blomqvist, R. Ahuja, Z. Xiong, P. Yang, M. Gao, H. Pan, P. Chen, Potassium-modified Mg(NH2)2/2LiH system for hydrogen storage, Angew. Chemie-Int. Ed. 48(2009) 5828-5832. [99] C. Li, Y. Liu, R. Ma, X. Zhang, Y. Li, M. Gao, H. Pan, Superior dehydrogenation/hydrogenation kinetics and long-term cycling performance of K and Rb Cocatalyzed Mg (NH2)2-2LiH system, ACS Appl. Mater. Interfaces 6(2014) 17024-17033. [100] H.W. Li, Y. Yan, S.I. Orimo, A. Züttel, C.M. Jensen, Recent progress in metal borohydrides for hydrogen storage, Energies. 4(2011) 185-214. [101] M. Chong, A. Karkamkar, T. Autrey, S.I. Orimo, S. Jalisatgi, C.M. Jensen, Reversible dehydrogenation of magnesium borohydride to magnesium triborane in the solid state under moderate conditions, Chem. Commun. 47(2011) 1330-1332. [102] Y. Yan, H.W. Li, H. Maekawa, M. Aoki, T. Noritake, M. Matsumoto, K. Miwa, S.I. Towata, S.I. Orimo, Formation process of[B12H12]2- from[BH4]- during the dehydrogenation reaction of Mg(BH4)2, Mater. Trans. 52(2011) 1443-1446. [103] Y. Yan, A. Remhof, S.J. Hwang, H.W. Li, P. Mauron, S.I. Orimo, A. Züttel, Pressure and temperature dependence of the decomposition pathway of LiBH4, Phys. Chem. Chem. Phys. 14(2012) 6514-6519. [104] M. Paskevicius, L.H. Jepsen, P. Schouwink, R. Černý, D.B. Ravnsbæk, Y. Filinchuk, M. Dornheim, F. Besenbacher, T.R. Jensen, Metal borohydrides and derivativessynthesis, structure and properties, Chem. Soc. Rev. 46(2017) 1565-1634. [105] S. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, S. Towata, A. Züttel, Dehydriding and rehydriding reactions of LiBH4, J. Alloys Compd. 404-406(2005) 427-430. [106] M. Chong, M. Matsuo, S.I. Orimo, T. Autrey, C.M. Jensen, Selective reversible hydrogenation of Mg(B3H8)2/MgH2 to Mg(BH4)2:pathway to reversible borane-based hydrogen storage? Inorg. Chem. 54(2015) 4120-4125. [107] J.B. Grinderslev, K.T. Møller, Y. Yan, X.M. Chen, Y. Li, H.W. Li, W. Zhou, J. Skibsted, X. Chen, T.R. Jensen, Potassium octahydridotriborate:diverse polymorphism in a potential hydrogen storage material and potassium ion conductor, Dalt. Trans. 48(2019) 8872-8881. [108] J.J. Vajo, S.L. Skeith, F. Mertens, Reversible storage of hydrogen in destabilized LiBH4, J. Phys. Chem. B 109(2005) 3719-3722. [109] U. Bösenberg, S. Doppiu, L. Mosegaard, G. Barkhordarian, N. Eigen, A. Borgschulte, T.R. Jensen, Y. Cerenius, O. Gutfleisch, T. Klassen, M. Dornheim, R. Bormann, Hydrogen sorption properties of MgH2-LiBH4 composites, Acta Mater. 55(2007) 3951-3958. [110] Y. Nakamori, K. Miwa, A. Ninomiya, H. Li, N. Ohba, S.I. Towata, A. Züttel, S.I. Orimo, Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites:first-principles calculations and experiments, Phys. Rev. B-Condens. Matter Mater. Phys. 74(2006) 1-9. [111] H.W. Li, S. Orimo, Y. Nakamori, K. Miwa, N. Ohba, S. Towata, A. Züttel, Materials designing of metal borohydrides:viewpoints from thermodynamical stabilities, J. Alloys Compd. 446-447(2007) 315-318. [112] J.B. Grinderslev, K.T. Møller, M. Bremholm, T.R. Jensen, Trends in synthesis, crystal structure, and thermal and magnetic properties of rare-earth metal borohydrides, Inorg. Chem. 58(2019) 5503-5517. [113] J.C. Crivello, R.V. Denys, M. Dornheim, M. Felderhoff, D.M. Grant, J. Huot, T.R. Jensen, P. de Jongh, M. Latroche, G.S. Walker, C.J. Webb, V.A. Yartys, Mg-based compounds for hydrogen and energy storage, Appl. Phys. A Mater. Sci. Process. 122(2016) 1-17. [114] J.C. Crivello, B. Dam, R.V. Denys, M. Dornheim, D.M. Grant, J. Huot, T.R. Jensen, P. de Jongh, M. Latroche, C. Milanese, D. Milčius, G.S. Walker, C.J. Webb, C. Zlotea, V.A. Yartys, Review of magnesium hydride-based materials:development and optimisation, Appl. Phys. A Mater. Sci. Process. 122(2016) 1-20. [115] P. Spatz, H.A. Aebischer, A. Krozer, L. Schlapbach, The diffusion of H in Mg and the nucleation and growth of MgH2 In thin films, Zeitschrift Fur Phys. Chemie. 181(1993) 393-397. [116] J. Zhang, Z. Li, Y. Wu, X. Guo, J. Ye, B. Yuan, S. Wang, L. Jiang, Recent advances on the thermal destabilization of Mg-based hydrogen storage materials, RSC Adv. 9(2019) 408-428. [117] T. Noritake, M. Aoki, S. Towata, Y. Seno, Y. Hirose, E. Nishibori, M. Takata, M. Sakata, Chemical bonding of hydrogen in MgH2, Appl. Phys. Lett. 81(2002) 2008-2010. [118] M. Zhu, Y. Lu, L. Ouyang, H. Wang, Thermodynamic tuning of mg-based hydrogen storage alloys:a review, Materials (Basel). 6(2013) 4654-4674. [119] J.J. Vajo, F. Mertens, C.C. Ahn, R.C. Bowman, B. Fultz, Altering hydrogen storage properties by hydride destabilization through alloy formation:LiH and MgH2 destabilized with Si, J. Phys. Chem. B 108(2004) 13977-13983. [120] R.W.P. Wagemans, J.H. van Lenthe, P.E. De Jongh, A.J. van Dillen, K.P. De Jong, Hydrogen storage in magnesium clusters:quantum chemical study, J. Am. Chem. Soc. 127(2005) 16675-16680. [121] J. Huot, F. Cuevas, S. Deledda, K. Edalati, Y. Filinchuk, T. Grosdidier, B.C. Hauback, M. Heere, T.R. Jensen, M. Latroche, S. Sartori, Mechanochemistry of metal hydrides:recent advances, Materials (Basel) 12(2019) 2778. [122] K. Edalati, R. Uehiro, Y. Ikeda, H.W. Li, H. Emami, Y. Filinchuk, M. Arita, X. Sauvage, I. Tanaka, E. Akiba, Z. Horita, Design and synthesis of a magnesium alloy for room temperature hydrogen storage, Acta Mater. 149(2018) 88-96. [123] Y. Lu, H. Kim, K. Sakaki, S. Hayashi, K. Jimura, K. Asano, Destabilizing the dehydrogenation thermodynamics of magnesium hydride by utilizing the immiscibility of Mn with Mg, Inorg. Chem. 58(2019) 14600-14607. [124] J. Huot, G. Liang, S. Boily, A. Van Neste, R. Schulz, Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride, J. Alloys Compd. 293(1999) 495-500. [125] T.K. Nielsen, K. Manickam, M. Hirscher, F. Besenbacher, T.R. Jensen, Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials, ACS Nano 3(2009) 3521-3528. [126] L. Xie, Y. Liu, Y.T. Wang, J. Zheng, X.G. Li, Superior hydrogen storage kinetics of MgH2 nanoparticles doped with TiF3, Acta Mater. 55(2007) 4585-4591. [127] G. Barkhordarian, T. Klassen, R. Bormann, Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst, Scr. Mater. 49(2003) 213-217. [128] Y. Wang, Y. Wang, Recent advances in additive-enhanced magnesium hydride for hydrogen storage, Prog. Nat. Sci. Mater. Int. 27(2017) 41-49. [129] H. Shao, L. He, H. Lin, H.W. Li, Progress and trends in magnesium-based materials for energy-storage research:a review, Energy Technol. 6(2018) 445-458. [130] G. Barkhordarian, T. Klassen, R.U. Bormann, Effect of Nb2O5 content on hydrogen reaction kinetics of Mg, J. Alloys Compd. 364(2004) 242-246. [131] N. Hanada, T. Ichikawa, S. Hino, H. Fujii, Remarkable improvement of hydrogen sorption kinetics in magnesium catalyzed with Nb2O5, J. Alloys Compd. 420(2006) 46-49. [132] V.A. Yartys, M. Lototskyy, V. Linkov, D. Grant, A. Stuart, J. Eriksen, R. Denys, R.C. Bowman, Metal hydride hydrogen compression:recent advances and future prospects, Appl. Phys. A Mater. Sci. Process. 122(2016) 1-18. [133] X. Wang, H. Liu, H. Li, A 70 MPa hydrogen-compression system using metal hydrides, Int. J. Hydrog. Energy 36(2011) 9079-9085. [134] S. Selvaraj, A. Jain, H. Miyaoka, Y. Kojima, T. Ichikawa, Hydrogen sorption and cyclic compressor performance of V40Ti21.5Cr33.5M5(M_Nb,Zr,Fe) alloys, J. Japan Inst. Energy 5(2019) 157-164. [135] T.J. Udovic, M. Matsuo, A. Unemoto, N. Verdal, V. Stavila, A.V. Skripov, J.J. Rush, H. Takamura, S.I. Orimo, Sodium superionic conduction in Na2B12H12, Chem. Commun. 50(2014) 3750-3752. [136] L. He, H.W. Li, H. Nakajima, N. Tumanov, Y. Filinchuk, S.J. Hwang, M. Sharma, H. Hagemann, E. Akiba, Synthesis of a bimetallic dodecaborate LiNaB12H12 with outstanding superionic conductivity, Chem. Mater. 27(2015) 5483-5486. [137] M. Matsuo, Y. Nakamori, S.I. Orimo, H. Maekawa, H. Takamura, Lithium superionic conduction in lithium borohydride accompanied by structural transition, Appl. Phys. Lett. 91(2007) 2-5. [138] Y. Oumellal, A. Rougier, G.A. Nazri, J.M. Tarascon, L. Aymard, Metal hydrides for lithium-ion batteries, Nat. Mater. 7(2008) 916-921. [139] Y. Yan, W. Dononelli, M. Jørgensen, J.B. Grinderslev, Y.S. Lee, Y.W. Cho, R. Černý, B. Hammer, T.R. Jensen, The mechanism of Mg2+ conduction in ammine magnesium borohydride promoted by a neutral molecule, Phys. Chem. Chem. Phys. 22(2020) 9204-9209. [140] Y. Yan, J.B. Grinderslev, Y.S. Lee, M. Jørgensen, Y.W. Cho, R. Černý, T.R. Jensen, Ammonia-assisted fast Li-ion conductivity in a new hemiammine lithium borohydride, LiBH4·1/2NH3, Chem. Commun. 56(2020) 3971-3974. [141] B.R.S. Hansen, M. Paskevicius, H.W. Li, E. Akiba, T.R. Jensen, Metal boranes:progress and applications, Coord. Chem. Rev. 323(2016) 60-70. [142] A.P. Drozdov, P.P. Kong, V.S. Minkov, S.P. Besedin, M.A. Kuzovnikov, S. Mozaffari, L. Balicas, F.F. Balakirev, D.E. Graf, V.B. Prakapenka, E. Greenberg, D.A. Knyazev, M. Tkacz, M.I. Eremets, Superconductivity at 250 K in lanthanum hydride under high pressures, Nature. 569(2019) 528-531. [143] A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system, Nature. 525(2015) 73-76. [144] K. Manickam, P. Mistry, G. Walker, D. Grant, C.E. Buckley, T.D. Humphries, M. Paskevicius, T. Jensen, R. Albert, K. Peinecke, M. Felderhoff, Future perspectives of thermal energy storage with metal hydrides, Int. J. Hydrog. Energy 44(2019) 7738-7745. [145] K.T. Møller, D. Sheppard, D.B. Ravnsbæk, C.E. Buckley, E. Akiba, H.W. Li, T.R. Jensen, Complex metal hydrides for hydrogen, thermal and electrochemical energy storage, Energies 10(2017) 1645. [146] P. Javadian, D.A. Sheppard, T.R. Jensen, C.E. Buckley, Destabilization of lithium hydride and the thermodynamic assessment of the Li-Al-H system for solar thermal energy storage, RSC Adv. 6(2016) 94927-94933. [147] M. Felderhoff, B. Bogdanović, High temperature metal hydrides as heat storage materials for solar and related applications, Int. J. Mol. Sci. 10(2009) 335-344. |
[1] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol[J]. 中国化学工程学报, 2023, 60(8): 186-193. |
[2] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant[J]. 中国化学工程学报, 2023, 60(8): 228-234. |
[3] | Hae-Kyun Park, Dong-Hyuk Park, Bum-Jin Chung. Influence of the electrolyte conductivity on the critical current density and the breakdown voltage[J]. 中国化学工程学报, 2023, 59(7): 169-175. |
[4] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid[J]. 中国化学工程学报, 2023, 59(7): 210-221. |
[5] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene[J]. 中国化学工程学报, 2023, 58(6): 69-75. |
[6] | Yanli Zhang, Zhengkun Hou, Dong Yao, Xiaomin Qiu, Hongru Zhang, Peizhe Cui, Yinglong Wang, Jun Gao, Zhaoyou Zhu, Limei Zhong. Energy, exergy, economic and environmental comprehensive analysis and multi-objective optimization of a sustainable zero liquid discharge integrated process for fixed-bed coal gasification wastewater[J]. 中国化学工程学报, 2023, 58(6): 341-354. |
[7] | Bin Gao, Junwen Chen, Qi Zuo, Hongyan Wang, Wenlin Li. The critical role of Zr in controlling the activity of Pd/Beta on the hydrogenation of phenol to cyclohexanone[J]. 中国化学工程学报, 2023, 57(5): 79-87. |
[8] | Linlin Su, Meijun Chen, Li Gong, Hua Yang, Chao Chen, Jun Wu, Ling Luo, Gang Yang, Lulu Long. Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties[J]. 中国化学工程学报, 2023, 57(5): 88-97. |
[9] | Yunchang Fan, Chunyan Zhu, Sheli Zhang, Lei Zhang, Qiang Wang, Feng Wang. Efficient and selective extraction of sinomenine by deep eutectic solvents[J]. 中国化学工程学报, 2023, 57(5): 109-117. |
[10] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites[J]. 中国化学工程学报, 2023, 57(5): 141-150. |
[11] | Jixiang Liu, Xin Zhou, Gengfei Yang, Hui Zhao, Zhibo Zhang, Xiang Feng, Hao Yan, Yibin Liu, Xiaobo Chen, Chaohe Yang. Conceptual carbon-reduction process design and quantitative sustainable assessment for concentrating high purity ethylene from wasted refinery gas[J]. 中国化学工程学报, 2023, 57(5): 290-308. |
[12] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures[J]. 中国化学工程学报, 2023, 56(4): 25-32. |
[13] | Yuhan Zhu, Jia Wei, Jun Li. Decontamination of Cr(VI) from water using sewage sludge-derived biochar: Role of environmentally persistent free radicals[J]. 中国化学工程学报, 2023, 56(4): 97-103. |
[14] | Iltaf Khan, Chunjuan Wang, Shoaib Khan, Jinyin Chen, Aftab Khan, Sayyar Ali Shah, Aihua Yuan, Sohail Khan, Mehwish K. Butt, Humaira Asghar. Bio-capped and green synthesis of ZnO/g-C3N4 nanocomposites and its improved antibiotic and photocatalytic activities: An exceptional approach towards environmental remediation[J]. 中国化学工程学报, 2023, 56(4): 215-224. |
[15] | Chao Yang, Zhelin Su, Yeshuang Wang, Huiling Fan, Meisheng Liang, Zhaohui Chen. Insight into the effect of gel drying temperature on the structure and desulfurization performance of ZnO/SiO2 adsorbents[J]. 中国化学工程学报, 2023, 56(4): 233-241. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||