›› 2008, Vol. 16 ›› Issue (4): 503-516.
Elmabruk A. Mansur, 叶明星, 王运东, 戴猷元
收稿日期:
2007-07-12
修回日期:
2008-04-14
出版日期:
2008-08-28
发布日期:
2008-08-28
通讯作者:
WANG Yundong, E-mail: wangyd@tsinghua.edu.cn
基金资助:
Elmabruk A. Mansur, YE Mingxing, WANG Yundong, DAI Youyuan
Received:
2007-07-12
Revised:
2008-04-14
Online:
2008-08-28
Published:
2008-08-28
Supported by:
摘要: Microreaction technology is one of the most innovative and rapid developing fields in chemical engineering, synthesis and process technology. Many expectations toward enhanced product selectivity, yield and purity, improved safety, and access to new products and processes are directed to the microreaction technology. Microfluidic mixer is the most important component in microfluidic devices. Based on various principles, active and passive micromixers have been designed and investigated. This review is focused on the recent developments in microfluidic mixers. An overview of the flow phenomena and mixing characteristics in active and passive micromixers is presented, including the types of physical phenomena and their utilization in micromixers. Due to the simple fabrication technology and the easy implementation in a complex microfluidic system, T-micromixer is highlighted as an example to illustrate the effect of design and operating parameters on mixing efficiency and fluid flow inside microfluidic mixers.
Elmabruk A. Mansur, 叶明星, 王运东, 戴猷元. A State-of-the-Art Review of Mixing in Microfluidic Mixers[J]. , 2008, 16(4): 503-516.
Elmabruk A. Mansur, YE Mingxing, WANG Yundong, DAI Youyuan. A State-of-the-Art Review of Mixing in Microfluidic Mixers[J]. , 2008, 16(4): 503-516.
1 Brody, J.P., Yager, P., Goldstein, R.E., Austin, R.H., “Biotechnology at low Reynolds numbers”, Biophys. J., 71, 3430-3441 (1996). 2 Brian, P., Mason, K.E., Price, J.L., Steinbacher, A.R., Tyler, D., “Greener approaches to organic synthesis using microreactor technology”, Chem. Rev., 107, 2300-2318 (2007). 3 Jensen, K.F., “Microreaction engineering—Is small better?”, Chem. Eng. Sci., 56, 293-303 (2001). 4 Schwarzer, H.C., Michael, M., Peukert, W., “Characterization of mixing in a T-mixer: A combined experimental and numerical study”, In: 11th Eur. Conf. Mixing, Hamberg, 113-120 (2003). 5 Baldyga, J., Pohorecki, R., “Turbulent micromixing in chemical reactors”, Chem. Eng. J., 58, 183-195 (1995). 6 Pihl, J., Karlsson, M., Chiu, D.T., “Microfluidic technologies in drug discovery”, Drug Delivery Today, 10, 1377-1383 (2005). 7 Hessel, V., L we, H., Sch nfeld, F., “Micromixer—A review on passive and active mixing principles”, Chem. Eng. Sci., 60, 2479-2501 (2005). 8 Yaralioglu, G.G., Wygant, I.O., Marentis, T.C., Khuri-Yakub, B.T., “Ultrasonic mixing in microfluidic channels using integrated transducers”, Anal. Chem., 76 (13), 3694-3698 (2004). 9 Kock, M., Witt, H., Evans, A.G.R., Brunnschweiler, A., “Improved characterization technique for micromixers”, J. Micromech. Microeng, 9, 156-158 (1999). 10 Kim, D.S., Lee, S.G., Kwon, T.H., Ahn, C.H., “A serpentine laminating micromixer combining splitting/recombination and advection”, Lab Chip, 7, 739-747 (2005). 11 Howell, P.B., Mott, D.R., Fertig, S., Kaplan, C.R., Gelden, J.P., Oran, E.S., Ligler, F.S., “A microfluidic mixer with grooves placed on the top and bottom of the channel”, Lab Chip, 5, 524-530 (2005). 12 Park, S.J., Kim, J.K., Park, J., Chung, S., Chung, C., Chang, J.K., “Rapid three-dimensional passive rotation micromixer using the breakup process”, J. Micromech. Microeng., 14, 6-14 (2004). 13 Rife, J.C., Bell, M.I., Horwitz, J.S., Kabler, M.N., Auyeung, R.C.Y., Kim, W.J., “Miniature valveless ultrasonic pumps and mixers”, Sens. Actuators A, 86, 135-140 (2000). 14 Deshmukh, A.A., Liepmann, D., Pisano, A.P., “Characterization of a micro-mixing, pumping and valving system”, In: Proc. Transducers 01, Munich, Germany, 779-782 (2001). 15 Tsai, J.H., Lin, L., “Active microfluidic mixer and gas bubble filter driven by thermal bubble pump”, Sens. Actuators A, 97/98, 665-671 (2002). 16 Bau, H.H., Zhong, J., Yi, M., “A minute magneto hydro dynamic (MHD) mixer”, Sens. Actuators B, 79, 207-215 (2001). 17 Oddy, M.H., Santiago, J.G., Mikkeisen, J.C., “Electrokinetic instability micromixing”, Anal. Chem., 73 (24), 5822-5832 (2001). 18 Posner, J.D., Santiago, J.G., “Convective instability of electrokinetic flows in a cross-shaped microchannel”, J. Fluid Mech., 555, 1-42 (2006). 19 Yang, Z., Matsumoto, S., Goto, H., Matsumoto, M., Maeda, R., “Ultrasonic micromixer for microfluidic systems”, Sens. Actuators A, 93,266-272 (2001). 20 West, J., Karamata, B., Lillis, B., Gleeson, J.P., Alderman, J., Collins, J., Lane, W., Mathewson, A., Berney, H., “Application of magnetohydrodynamic actuation to continuous flow chemistry”, Lab Chip, 2,224-230 (2002). 21 Haeberle, S., Brenner, T., Schlosser, H.P., Zengerle, R., Ducree, J., “Centrifugal micromixer”, Chem. Eng. Technol., 28 (5), 613-616 (2005). 22 Wu, Z., Nguyen, N.T., Huang, X.Y., “Non-linear diffusive mixing in microchannels: Theory and experiments”, J. Micromech. Microeng.,14, 604-611 (2004). 23 Yi, M., Bau, H.H., “The kinematics of bend-induced mixing in micro-conduits”, Int. J. Heat Fluid Flow, 24, 645-656 (2003). 24 He, B., Burke, B.J., Zhang, X., Zhang, R., Regnier, F.E., “A picoliter-volume mixer for microfluidic analytical systems”, Anal. Chem.,73, 1942-1947 (2001). 25 Melin, J., Gimenez, G., Roxhed, N., Wijngaart, W., Stemme, G., “A fast passive and planar liquid sample micromixer”, Lab Chip, 4,214-219 (2004). 26 Wang, H., Iovenitti, P., Harvey, E., Masood, S., “Optimizing layout of obstacles for enhanced mixing in microchannels”, Smart Mater. Struct., 11, 662-667 (2002). 27 Lin, Y., Gerfen, G.J., Rousseau, D.L., Yeh, S.R., “Ultrafast microfluidic mixer and freeze-quenching device”, Anal. Chem., 75, 5381-5386 (2003). 28 Evans, J., Liepmann, D., Pisano, A.P., “Planar laminar mixer”, In: Proc. MEMS 97, 10th IEEE Int. Workshop MicroElectromechanical Systems, Nagoya, Japan, 96-101 (1997). 29 L b, P., Drese, K.S., Hessel, V., Hofmann, C., L we, H., Schenk, R., Sch nfeld, F., Werner, B., “Steering of liquid mixing speed in interdigital micromixers-from very fast to deliberately slow mixing”, In:11th Eur. Conf. Mixing, Bamberg, Germany, 253-259 (2003). 30 Stone, H.A., Stroock, A.D., Ajdari, A., “Engineering flows in small devices: microfluidics toward a lab-on-a-chip”, Annu. Rev. Fluid Mech., 36, 381-411 (2004). 31 Hard, S., Schonfeld, F., “Laminar mixing in different interdigital micromixers (II) Numerical simulations”, AIChE J., 49 (3), 578-584 (2003). 32 Stroock, A.D., Dertinger, S.K., Whitesides, G.M., Ajdari, A., “Pattering flows using grooved surfaces”, Anal. Chem., 74, 5306-5312 (2002). 33 Miyake, R., Lammerink, T.S.J., Elwenspoek, M., Fluitman, J.H.J., “Micro mixer with fast diffusion”, In: Proc. IEEE MicroElectromechanical Workshop, Fort Lauderale, FL, 248-253 (1993). 34 Hong, C.C., Choi, J.W., Ahn, C.H., “A novel in-plane passive microfluidic mixer with modified Tesla structures”, Lab Chip, 2, 109-113 (2004). 35 Chang, S., Cho, Y.H., “Static micromixers using alternating whirls and lamination”, J. Micromech. Microeng, 15, 1397-1405 (2005). 36 Drese, K.S., “Optimization of interdigital micromixers via analytical modeling—Exemplified with the SuperFocus mixer”, Chem. Eng. J.,101, 403-407 (2004). 37 Panic, S., Loebbecke, S., Tuercke, T., Antes, J., Bo kovic, D., “Experimental approaches to a better understanding of mixing performance of microfluidic devices”, Chem. Eng. J., 101, 409-419 (2004). 38 Cha, J., Kim, J., Ryu, S.K., Park, J., “A highly efficient 3D micromixer using soft PDMS bonding”, J. Micromech. Microeng., 16,1778-1782 (2006). 39 Zhao, B., Moore, J.S., Beebe, D.J., “Principles of surface-directed liquid flow in microfluidic channels”, Anal. Chem., 74, 4259-4268 (2002). 40 Chung, Y.C., Hsu, Y.L., Jen, C.P., Lu, M.C., Lin, Y.C., “Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber”, Lab Chip, 4, 70-79 (2004). 41 Sundaram, N., Tafti, D.K., “Evaluation of microchamber geometries and surface conditions for electrokinetic driven mixing”, Anal. Chem., 76, 3785-3793 (2004). 42 B hm, S., Greiner, K., Schlautmann, S., de Vries, S., van den Berg, A., “A rapid vortex micromixer for studying high-speed chemical reactions”, Micro Total Anal. Syst., 1, 25-37 (2001). 43 Lin, C.H., Tsai, C.H., Fu, L.M., “A rapid three-dimensional vortex micromixer utilizing self-rotation effects under low Reynolds number conditions”, J. Micromech. Microeng., 15, 935-943 (2005). 44 Branebjerg, J., Gravesen, P., Krog, J.P., Nielsen, C.R., “Fast mixing by lamination”, In: Proc. 9th IEEE MEMS Workshop, Allen, M.G., Reed, M.L., eds., San Diego, 441-446 (1996). 45 L we, H., Ehrfeld, W., Hessel, V., Richter, T., Schiewe, J., “Micromixing technology”, In: 4th Int. Conf. Microreaction Technol., IMRET 4, AIChE Topical Conf. Proc., Atlanta, USA, 31-47 (2000). 46 Sch nfeld, F., Hessel, V., Hofmann, C., “An optimised split-andrecombine micro mixer with uniform ‘chaotic’ mixing”, Lab Chip, 4, 65-69 (2004). 47 Bessoth, F.G., de Mello, A.J., Manz, A., “Microstructure for efficient continuous flow mixing”, Anal. Commun., 36, 213-215 (1999). 48 Bertsch, A., Heimgartner, S., Cousseaub, P., Renauda, P., “Static micromixers based on large-scale industrial mixer geometry”, Lab Chip,1, 56-60 (2001). 49 Stroock, A.D., Dertinger, S.K.W., Ajdari, A., Mezic, I., Stone, H.A., Whitesides, G.M., “Chaotic mixer for microchannels”, Science, 295,647-651 (2002). 50 Liu, R.H., Stremler, M.A., Sharp, K.V., Olsen, M.G., Santiago, J.G., Adrian, R., Aref, H., Beebe, D.J., “Passive mixing in a three-dimensional serpentine microchannel”, J. Microelectromech. Syst., 9, 190-197 (2000). 51 Lee, Y.K., Deval, J., Tabeling, P., Ho, C.M., “Chaotic mixing in electrokinetically and pressure driven micro flows”, In: Proc. 14 IEEE Workshop MEMS, Interlaken, Switzerland, 483-486 (2001). 52 Dodge, A., Jullien, M.C., Lee, Y.K., Niu, X., Oskkels, F., Tabeling, P., “An example of a chaotic micromixer: The cross-channel micromixer”, C. R. Phys., 5, 557-563 (2004). 53 Hessel, V., Zimmerman, W.B., “Investigation of the convective motion through a staggered herringbone micromixer at low Reynolds number flow”, Chem. Eng. Sci., 61, 2977-2985 (2006). 54 Stroock, A.D., Weck, M., Chiu, D.T., Huck, W.T.S., Kenis, P.J.A., “Patterning electro-osmotic flow with patterned surface charge”, Phys. Rev. Lett., 84, 3314-3317 (2000). 55 Barker, S.L.R., Ross, D., Tarlov, M.J., Gaitan, M., Locascio, Locascio, L.E., “Control of flow direction in microfluidic devices with polyelectrolyte multilayers”, Anal. Chem., 72, 5925-5929 (2000). 56 Hau, W.L.W., Trau, D.W., Sucher, N.J., Wong, M., Zohar, Y., “Surface-chemistry technology for microfluidics”, J. Micromech. Microeng., 13, 272-278 (2003). 57 Roberts, M.A., Rossier, J.S., Bercier, P., Girault, H., “UV laser machined polymer substrates for the development of microdiagnostic systems”, Anal. Chem., 69, 2035-2042 (1997). 58 Locascio, L.E., Perso, C.E., Lee, C.S., “Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate”, J. Chromatogr., A 857, 275-284 (1999). 59 Henry, A.C., Tutt, T.J., Galloway, M., Davidson, Y.Y., Mcwhorter, C.S., Soper, S.A., McCarley, R.L., “Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical devices”, Anal. Chem., 72, 5331-5337 (2000). 60 Nguyen, N.T., Wu, Z., “Micromixers—A review”, J. Micromech. Microeng., 15, R1-R16 (2005). 61 Schulte, T.H., Bardell, R.L., Weigl, B.H., “Microf luidic technologies in clinical diagnostics”, Clin. Chim. Acta, 321, 1-10 (2002). 62 Lima, C.T., Zhang, Y., “Bead-based microfluidic immunoassays: The next generation”, Biosensors and Bioelectronics, 22, 1197-1204 (2007). 63 Hawkes, J.J., Coakley, W.T., “Force field particle filter, combining ultrasound standing waves and laminar flow”, Sens. Actuators B Chem., 75, 213-222 (2001). 64 Hawkes, J.J., Coakley, W.T., Groschl, M., Benes, E., Armstrong, S., Tasker, P.J., Nowotny, H., “Single half-wavelength ultrasonic particle filter: predictions of the transfer matrix multilayer resonator model and experimental filtration results”, J. Acoustic. Soc. Am., 111,1259-1266 (2002). 65 Becker, H., Locascio, L., “Polymer microfluidic devices”, Talanta,56, 267-287 (2002). 66 Murakami, Y., Endo, T., Yamamura, S., Nagatani, N., Takamura, Y., Tamiya, E., “On-chip micro-flow polystyrene bead-based immunoassay for quantitative detection of tacrolimus”, Anal. Biochem., 334 (1), 111-116 (2004). 67 Luo, C., Fu, Q., Li, H., Xu, L., Sun, M., Ouyang, Q., Chen, Y., Ji, H., “PDMS microfludic device for optical detection of protein immunoassay using gold nanoparticles”, Lab. Chip, 7, 726-729 (2005). 68 Matsubara, Y., Murakami, Y., Kobayashi, M., Morita, Y., Tamiya, E., “Application of on-chip cell cultures for the detection of allergic response”, Biosens. Bioelectron., 19 (7), 741-747 (2004). 69 Peterson, S.L., McDonald, A., Gourley, P.L., Sasaki, D.Y., “Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: Cell culture and flow studies with glial cells”, J. Biomed. Materi. Res. A, 72A (1), 10-18 (2005). 70 Gourley, P.L., Copeland, R.G., Cox, J.D., Hendricks, J.K., McDonald, A.E., Peterson, S.L.G., “Biocompatible semiconductor optoelectronics”, J. Biomed. Opt., 7 (4), 546-554 (2002). 71 Engler, M., Kockmann, N., Kiefer, T., Woias, P., “Convective mixing and its application to microreactors”, In: 2th Int. Conf. Microchannels Minichannels, New York, USA, 2412, 781-787 (2004). 72 Xu, B., Ooi, K.T., Mavriplis, C., Zaghloul, M.E., “Viscous dissipation effects for liquid flow in microchannels”, Model. Simulat. Microsyst., 100-103 (2002) 73 Xu, B., Ooi, K.T., Mavriplis, C., Zaghloul, M.E., “Evaluation of viscous dissipation in liquid flow in microchannels”, J. Micromech. Microeng., 13, 53-57 (2003). 74 Koo, J., Kleinstreuer, C., “Viscous dissipation effects in microtubes and microchannels”, Int. J. Heat Mass Transfer, 47, 3159-3169 (2004). 75 Morini, G.L., “Viscous heating in liquid flows in micro-channels”, Int. J. Heat Mass Transfer, 48, 3637-3647 (2005). 76 Judy, J., Maynes, D., Webb, B.W., “Characterization of frictional pressure drop for liquid flows through microchannels”, Int. J. Heat Mass Transfer, 45, 3477-3489 (2002). 77 Lin, C.H., Chao, C.H., Lan, C.W., “Low azeotropic solvent for bonding of PMMA microfluidic devices”, Sensors Actuators B, 121,698-705 (2007). 78 Bayraktar, T., Pidugu, S.B., “Characterization of liquid flows in microfluidic system”, Heat Mass Transfer J., 49, 815-824 (2006). 79 Pfahler, J., Harley, J., Bau, H., Zemel, J., “Liquid transport in micron and submicron channels”, Sens. Actuators A Phys., 22, 431-434 (1990). 80 Peng, X.F., Peterson, G.P., “Convective heat transfer and flow friction for water flow in microchannel structures”, Int. J. Heat Mass Transfer, 39, 2599-2608 (1996). 81 Mala, G.M., Li, D.Q., “Flow characteristics of water in microtubes”, Int. J. Heat Fluid Flow, 20, 142-148 (1999). 82 Bai, X.X., Josserand, J., Jensen, H., Rossier, J.S., Girault, H.H., “Finite element simulation of pinched pressure-driven flow injection in microchannels”, Anal. Chem., 74, 6205-6215 (2002). 83 Vanakker, E.B., Bos, M., van der Linden, W.E., “Convection and diffusion in a micro-flow injection system”, Anal. Chim. Acta, 373,227-239 (1998). 84 Ehlers, S., Elgeti, K., Menzel, T., Wiessmeier, G., “Mixing in the offstream of a microchannel system”, Chem. Eng. Process., 39,291-298 (2000). 85 Keoschkerjan, R., Richter. M., Boskovic, D., Schnurer, F., Lobbecke, S., “Novel multifunctional microreaction unit for chemical engineering”, Chem. Eng. J., 101, 469-475 (2004). 86 Aoki, N., Hasebe, S., Mae, K., “Mixing in microreactors: effectiveness of lamination segents as a form of feed on product distribution for multiple reactions”, Chem. Eng. J., 101, 323-331 (2004). 87 Santos, R.J., Teixeria, A.M., Lopes, C.B., “Study of mixing and chemical reaction in RIM”, Chem. Eng. Sci., 60, 2381-2398 (2005). 88 Mala, G.M., Li, D., Dale, J.D., “Heat transfer and fluid flow in microchannels”, Int. J. Heat Mass Transfer, 40, 3079-3088 (1997). 89 Ma, H.B., Peterson, G.P., “Laminar friction factor in microscale ducts of irregular cross-section”, Microscale Thermophys. Eng., 1,253-265 (1997). 90 Glasgow, I., Batton, J., Aubry, N., “Electroosmotic mixing in microchannels”, Lab Chip, 4, 558-562 (2004). 91 Gad-el-Hak, M., “The fluid mechanics of microdevices”, J. Fluids Eng., 121, 5-33 (1999). 92 Guo, Z.Y., Li, Z.X., “Size effect on microscale single-phase flow and heat transfer”, Int. J. Heat Mass Transfer, 46, 149-159 (2003). 93 Koo, J., Kleinstreuer, C., “Liquid flow in microchannels: Experimental observations and computational analyses of microfluidic effects”, J. Micromechan. Microengin., 13, 568-579 (2003). 94 Lee, P.S., Garimella, S.V., Liu, D., “Investigation of heat transfer in rectangular microchannels”, Int. J. Heat Mass Transfer, 48,1688-1704 (2005). 95 deMello, A., deMello, J., “Control and detection of chemical reactions in microfluidic systems”, Nature, 442, 394-402 (2006). 96 Baldyga, J., Bourne, J.R., Turbulent Mixing and Chemical Reactions, John Wiley, Chichester, United Kingdom (1999). 97 Wiles, C., Watts, P., Haswell, S.J., Pombo-Villar, E., “The aldol reaction of silyl enol ethers within a micro reactor”, Lab Chip, 1,100-101 (2001). 98 Wiles, C., Watts, P., Haswell, S.J., Pombo-Villar, E., “1,4-Addition of enolates to a,b-unsaturated ketones within a micro reactor”, Lab Chip, 2, 62-64 (2002). 99 Haswell, S.J., Sullivan, B.O., Styring, P., “Kumada–Corriu reactions in a pressure-driven microflow reactor”, Lab Chip, 1, 164-166 (2001). 100 Okamoto, H., Ushijima, T., Kitoh, O., “New methods for increasing productivity by using microreactors of planar pumping and alternating pumping types”, Chem. Eng. J., 101, 57-63 (2004). 101 Schoenherr, R.M., Michael, M.Y., Dovichi, N.J., “CE-Microreactor-CE-MS/MS for protein analysis”, Anal. Chem.,79, 2230-2238 (2007). 102 Ehrefeld, W., Golbig, K., Hessel, V., L we, H., Richter, T., “Characterization of mixing in micromixer by a testreaction: Single mixing units and mixer arrays”, Ind. Eng. Chem. Res., 38, 1075-1082 (1999). 103 Zech, T., Hönicke, D., “Superior performance of static micromixers”, In: Proceedings of the 4th International Conference of Microreaction Technology, 390-399 (2000). 104 Engler, M., Kockmann, N., Kiefer, T., Woias, P., “Numerical and experimental investigations on liquid mixing in static micromixers”, Chem. Eng. J., 101, 315-322 (2004). 105 Yu, H.Y., Xiao, S.S., Chen, H., Fan, S.F., “Influence of flow velocity profile on mixing in micromixer”, Nanotechnology and Precision Engineering (China), 3 (4), 290-294 (2005). (in Chinese). 106 Bothe, D., Stemichb, C., Warnecke, H., “Fluid mixing in a T-shaped micro-mixer”, Chem. Eng. Sci., 61, 2950-2958 (2006). 107 Zhao, Y.C, Ying, Y., Chen, G.W., Yuan, Q., “Characterization of micro-mixing in T-shaped micro-mixer”, J. Chem. Ind. Eng. (China),57, 1884-1890 (2006). (in Chinese) 108 Kockmann, N., Föll, C., Woias, P., “Flow regimes and mass transfer characteristics in static micromixers”, In: Proc. Soc. Photo-Opt. Instrum. Eng., 4982, 319-329 (2003). 109 Goullet, A., Glasgow, I., Aubry, N., “Effects of microchannel geometry on pulsed flow mixing”, Mech. Res. Commun., 33, 739-746 (2006). 110 Johnson, T., Ross, D., Locascio, L., “Rapid microfluidic mixing”, Anal. Chem., 74, 45-51 (2002). 111 Wong, S.H., Bryant, P., Ward, M., Wharton, C., “Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies”, Sensors and Actuators, B95, 414-424 (2003). 112 Lin, Y.C., Chung, Y.C., Wu, C.Y., “Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel”, Biomed. Microdevices, 9, 215-221 (2007). 113 Engler, M., Föll, C., Kockmann, N., Woias, P., “Investigations of liquid mixing in static micromixers”, In: Proc. 11th Eur. Conf. Mixing, Bamberg, Germany, 277-284 (2003). 114 Wang, R.J., Lin, J.Z., “Research on the influence factors of diffusion in T-sensor microchannel”, Progress of Natural Science, 14 (9),1053-1057 (2004). 115 Wang, R.J., Lin, J.Z., Li, Z.H., “Research on the influence factors on diffusion in rectangle microchannel”, China. Mech. Eng., 16 (4),345-349 (2005). (in Chinese) 116 Kockmann, N., Engler, M., F ll, C., Woias, P., “Liquid mixing in static micromixers with a various cross sections”, In: 1st Int. Conf. Microchannels Minichannels, New York, USA, 1121, 911-917 (2003). 117 Hoffmann, M., Raebiger, N., Schlueter, M., Blazy, S., Bothe, D., Stemich, C., Warnecke, A., “Experimental and numerical investigations of T-shaped micromixers”, In: Proc. 11th Eur. Conf. Mixing, Bamberg, Germany, 269-276 (2003). 118 Gobby, D.P., Angeli, A., “Mixing characteristics of T-type microfluidic mixers”, J. Micromech. Microeng., 11, 126-132 (2001). 119 Liu, Y.H., Lin, J.Z., Bao, F.B., Shi, X., “Numerical simulation of the scalar mixing characteristics in three-dimensional microchannels”, Chin. J. Chem. Eng., 13 (3), 297-302 (2005). 120 Bothe, D., “Mixing in T-shaped microreactor: Scale and quality of mixing”, In: 16th Eur. Symp. Computer Aided Process Engineering and 9th Int. Symp. Process Systems Engineering, Marquardt, W., Pantelidis, C., eds., Elsevier, Garmisch-Partenkirchen, Germany,351-357 (2006). 121 Mengeaud, V., Josserand, J., Girault, H., “Mixing processes in a zigzag microchannel: Finite element simulations and optical study”, Anal. Chem., 74, 4279-4286 (2002). 122 Mansur, E.A., Ye, M.X., Wang, Y.D., Dai, Y.Y., “Numerical investigations on liquid mixing in double-T-shaped microfluidic mixer”, In:5th Int. Conf. Separation Science and Technology (ICSST’2007), Beijing, 1-7 (2007). 123 Chen, C.H., Lin, H., Lele, S.K., Santiago, J.G., “Convective and absolute electrokinetic instability with conductivity gradients”, J. Fluid Mech., 524, 263-303 (2005). 124 Moctar, A.O.E., Aubry, N., Batton, J., “Electro-hydrodynamic micro-fluidic mixer”, Lab Chip, 3, 273-280 (2003). 125 Fu, L.M., Tsai, C.H., “Design of interactively time-pulsed microfluidic mixers in microchips using numerical simulation”, Jap. J. Appl. Phys., 46 (1), 420-429 (2007). |
[1] | Qingming Ma, Jianhong Xu. Green microfluidics in microchemical engineering for carbon neutrality[J]. 中国化学工程学报, 2023, 53(1): 332-345. |
[2] | Fang Yang, Wei Zhao, Guiren Wang. Electrokinetic mixing of two fluids with equivalent conductivity[J]. 中国化学工程学报, 2022, 42(2): 256-260. |
[3] | Zifei Yan, Jiaxin Tian, Chencan Du, Jian Deng, Guangsheng Luo. Reaction kinetics determination based on microfluidic technology[J]. 中国化学工程学报, 2022, 41(1): 49-72. |
[4] | Yifan Xing, Junyu Liu, Xiaojie Guo, Haipeng Liu, Wen Zeng, Yi Wang, Chong Zhang, Yuan Lu, Dong He, Shaohua Ma, Yonghong He, Xin-Hui Xing. Engineering organoid microfluidic system for biomedical and health engineering: A review[J]. 中国化学工程学报, 2021, 29(2): 244-254. |
[5] | Xuanyu Li, Qiang Feng, Ziwei Han, Xingyu Jiang. Enhancing gene editing efficiency for cells by CRISPR/Cas9 system-loaded multilayered nanoparticles assembled via microfluidics[J]. 中国化学工程学报, 2021, 38(10): 216-220. |
[6] | Wenhao Niu, Yuanzhi Zheng, Ying Li, Le Du, Wei Liu. Photochemical microfluidic synthesis of vitamin D3 by improved light sources with photoluminescent substrates[J]. 中国化学工程学报, 2021, 29(1): 204-211. |
[7] | Mostafa Rahimi, Sajad Yazdanparast, Pouya Rezai. Parametric study of droplet size in an axisymmetric flow-focusing capillary device[J]. 中国化学工程学报, 2020, 28(4): 1016-1022. |
[8] | Kunpeng Cheng, Chunyu Liu, Tianyu Guo, Lixiong Wen. CFD and experimental investigations on the micromixing performance of single countercurrent-flow microchannel reactor[J]. 中国化学工程学报, 2019, 27(5): 1079-1088. |
[9] | Shaobin Zhang, Helen Yan, Yuhao Geng, Ke Wang, Jianhong Xu. Equilibrium morphology of gas-liquid Janus droplets: A numerical analysis of buoyancy effect[J]. Chinese Journal of Chemical Engineering, 2018, 26(10): 2121-2126. |
[10] | Yunlong Zhou, He Chang, Tianyu Qi. Gas-liquid two-phase flow in serpentine microchannel with different wall wettability[J]. , 2017, 25(7): 874-881. |
[11] | Xuehui Ge, Hong Zhao, TaoWang, Jian Chen, Jianhong Xu, Guangsheng Luo. Microfluidic technology for multiphase emulsions morphology adjustment and functional materials preparation[J]. Chinese Journal of Chemical Engineering, 2016, 24(6): 677-692. |
[12] | Wanbo Li, Xingye Geng, Yuyun Bao, Zhengming Gao. Micromixing characteristics in a gas-liquid-solid stirred tank with settling particles[J]. , 2015, 23(3): 461-470. |
[13] | Zhengming Gao, Jing Han, Yuyun Bao, Zhipeng Li. Micromixing efficiency in a T-shaped confined impinging jet reactor[J]. , 2015, 23(2): 350-355. |
[14] | Ping Wu, Zhaofeng Luo, Zhifeng Liu, Zida Li, Chi Chen, Lili Feng, Liqun He. Drag-induced breakup mechanism for droplet generation in dripping within flow focusing microfluidics[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 7-14. |
[15] | 杨旷, 初广文, 邵磊, 向阳, 张亮亮, 陈建峰. Micromixing Efficiency of Viscous Media in Micro-channel Reactor[J]. , 2009, 17(4): 546-551. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||