[1] C.J. Vörösmarty, P.B. McIntyre, M.O. Gessner, D. Dudgeon, A. Prusevich, P. Green, P.M. Davies, Global threats to human water security and river biodiversity, Nature 467(2010) 555-561. [2] S. Shamaila, T. Bano, A.K.L. Sajjad, Efficient visible light magnetic modified iron oxide photocatalysts, Ceram. Int. 43(2017) 14672-14677. [3] S. Dawood, T. Sen, Review on dye removal from its aqueous solution into alternative cost effective and non-conventional adsorbents, J. Chem. Process Eng. 1(2014) 1-11. [4] G.S. Jamila, S. Shamaila, A.K.L. Sajjad, M. Long, Nitrogen doped carbon quantum dots and GO modified WO3 nanosheets combination as an effective visible photocatalyst, J. Hazard. Mater. 382(2020) 121087. [5] Y. Wei, Y. Zhang, W. Geng, H. Su, M. Long, Efficient bifunctional piezocatalysis of Au/BiVO4 for simultaneous removal of 4-chlorophenol and Cr (VI) in water, Appl. Catal. B: Environ. 259(2019) 118084. [6] J. Zhang, L. Zheng, F. Wang, C. Chen, H. Wu, S.A.K. Leghari, M. Long, The critical role of furfural alcohol in photocatalytic H2O2 production on TiO2, Appl. Catal. B: Environ. 269(2020) 118770. [7] N. Saima, S. Sajjad, A.K.L. Sajjad, S. Sania, A. Iqbal, ZnO/TiO2 nanocomposite photoanode as an effective UV-vis responsive dye sensitized solar cell, Mater. Res. Express 5(9) (2018) 095905. [8] S.A.B. Asif, S.B. Khan, A.M. Asiri, Visible light functioning photocatalyst based on Al2O3 doped Mn3O4 nanomaterial for the degradation of organic toxin, Nanoscale Res. Lett. 10(1) (2015) 355. [9] A. Iqbal, S. Sajjad, S.A.K. Leghari, Low cost graphene oxide modified alumina nanocomposite as solar light induced photocatalyst, ACS Appl. Nano Mater. 1(9) (2018) 4612-4621. [10] S. Balamurugan, A.R. Balu, V. Narasimman, G. Selvan, K. Usharani, J. Srivind, V. S. Nagarethinam, Multi metal oxide CdO-Al2O3-NiO nanocompositesynthesis, photocatalytic and magnetic properties, Mater. Res. Express 6(1) (2018) 015022. [11] N.R. Habib, A.M. Taddesse, A. Temesgen, Synthesis, characterization and photocatalytic activity of Mn2O3/Al2O3/Fe2O3 nanocomposite for degradation of malachite green, Bull. Chem. Soc. Ethiop. 32(1) (2018) 101-109. [12] B. Kasprzyk-Hordern, Chemistry of alumina, Reactions in aqueous solution and its application in water treatment, Adv. Coll. Interf. Sci. 110(2004) 19-48. [13] B. Veith, F. Werner, D. Zielke, R. Brendel, J. Schmidt, Comparison of the thermal stability of single Al2O3 layers and Al2O3/SiNx stacks for the surface passiviation of silicon, Energy Proc. 8(2011) 307-312. [14] Z. Huang, A. Zhou, J. Wu, Y. Chen, X. Lan, H. Bai, L. Li, Bottom-up preparation of ultrathin 2D Aluminum oxide nanosheets by duplicating graphene oxide, Adv. Mater. 28(2016) 1703-1708. [15] Y. Li, C. Peng, L. Li, P. Rao, Self-assembled 3D hierarchically structured gamma alumina by hydrothermal method, J. Amer. Ceram. Soc. 97(2014) 35-39. [16] M. Derakhshani, A. Hashamzadeh, M.M. Amini, High surface area mesoporous alumina nanosheets and nanorolls from an aluminum based metal organic framework, Ceram. Int. 42(2016) 17742-17748. [17] F. Arena, T. Torre, C. Raimondo, A. Parmaliana, Structure and redox properties of bulk and supported manganese oxide catalysts, PCCP 3(10) (2001) 1911-1917. [18] G.S. Gund, D.P. Dubal, B.H. Patil, S.S. Shinde, C.D. Lokhande, Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors, Electrochim. Acta 92(2013) 205-215. [19] E.R. Ezeigwe, M.T. Tan, P.S. Khiew, C.W. Siong, Solvothermal synthesis of graphene-MnO2 nanocomposites and their electrochemical behavior, Ceram. Int. 41(9) (2015) 11418-11427. [20] G.C. Silva, F.S. Almeida, A.M. Ferreira, V.S.T. Ciminelli, Preparation and application of a magnetic composite (Mn3O4/Fe3O4) for removal of As (III) from aqueous solutions, Mater. Res. 15(3) (2012) 403-408. [21] M. Rekha, H. Kathyayini, N. Nagaraju, Catalytic activity of manganese oxide supported on alumina in the synthesis of quinoxalines, Front. Chem. Sci. Eng. 7(4) (2013) 415-421. [22] E. Rezaei, J. Soltan, Low temperature oxidation of toluene by ozone over MnOx/ c-alumina and MnOx/MCM-41 catalysts, Chem. Eng. J. 198(2012) 482-490. [23] J. Pei, W. Ma, R. Li, Y. Li, H. Du, Preparation and photocatalytic properties of TiO2-Al2O3 composite loaded catalysts, J. Chem. 2015(2015) 1-7. [24] S. Alemu, E. Mulugeta, F. Zewge, B.S. Chandravanshi, Water defluoridation by aluminium oxide-manganese oxide composite material, Environ. Technol. 35(15) (2014) 1893-1903. [25] C. Ray, S. Dutta, Y. Negishi, T. Pal, A new stable Pd-Mn3O4 nanocomposite as an efficient electrocatalyst for the hydrogen evolution reaction, Chem. Commun. 52(36) (2016) 6095-6098. [26] Y. Wu, D. Chu, P. Yang, Y. Du, C. Lu, Ternary mesoporous WO3/Mn3O4/N-doped graphene nanocomposite for enhanced photocatalysis under visible light irradiation, Catal. Sci. Technol. 5(6) (2015) 3375-3382. [27] D. Pathania, R. Katwal, G. Sharma, M. Naushad, M.R. Khan, H. Ala’a, Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye, Int. J. Biol. Macromol. 87(2016) 366-374. [28] F. Shehata, M. Abdelhameed, A. Fathy, M. Elmahdy, Preparation and characteristics of Cu-Al2O3 nanocomposite, Open J. Metal 1(2) (2011) 25. [29] J.F. Bartolomé, A. Smirnov, H.D. Kurland, J. Grabow, F.A. Müller, New ZrO2/ Al2O3 nanocomposite fabricated from hybrid nanoparticles prepared by CO2 laser Co-vaporization, Sci. Rep. 6(2016) 20589. [30] Z. Wan, J. Wang, Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst, J. Hazard. Mater. 324(2017) 653-664. [31] S. Motaghi, M. Farahmandjou, Structural and optoelectronic properties of Ce-Al2O3 nanoparticles prepared by sol-gel precursors, Mater. Res. Express 6(4) (2019) 045008. [32] B.J. Rani, M. Ravina, G. Ravi, S. Ravichandran, V. Ganesh, R. Yuvakkumar, Synthesis and characterization of hausmannite (Mn3O4) nanostructures, Surf. Interfaces 11(2018) 28-36. [33] H. Dhaouadi, O. Ghodbane, F. Hosni, F. Touati, Mn3O4 nanoparticles: Synthesis, characterization, and dielectric properties, ISRN Spectroscopy 2012(2012) 1-8. [34] R. Tholkappiyan, A.N. Naveen, K. Vishista, F. Hamed, Investigation on the electrochemical performance of hausmannite Mn3O4 nanoparticles by ultrasonic irradiation assisted co-precipitation method for supercapacitor electrodes, J. Taibah Univ. Sci. 12(5) (2018) 669-677. [35] A.S. Jbara, Z. Othaman, A.A. Ati, M.A. Saeed, Characterization of γ-Al2O3 nanopowders synthesized by Co-precipitation method, Mater. Chem. Phys. 188(2017) 24-29. [36] S. Dey, Synthesis and Application of c-Alumina Nanopowders, Ph.D Thesis, Indian Institute of Technology, West Bengal, 2012. [37] T.P.M. Chu, N.T. Nguyen, T.L. Vu, T.H. Dao, L.C. Dinh, H.L. Nguyen, T.D. Pham, Synthesis, characterization and modification of alumina nanoparticles for cationic dye removal, Materials 12(3) (2019) 450. [38] S.A. Hosseini, A. Niaei, D. Salari, Production of γ-Al2O3 from Kaolin, Open J. Phys. Chem. 1(02) (2011) 23. [39] M. Mahinroosta, A. Allahverdi, Production of nanostructured c-alumina from aluminum foundry tailing for catalytic applications, Int. Nano Lett. 8(4) (2018) 255-261. [40] J. Du, Y. Gao, L. Chai, G. Zou, Y. Li, Y. Qian, Hausmannite Mn3O4 nanorods: Synthesis, characterization and magnetic properties, Nanotechnology 18(15) (2007) 158002. [41] A.A. Ullah, A.F. Kibria, M. Akter, M.N.I. Khan, M.A. Maksud, R.A. Jahan, S.H. Firoz, Synthesis of Mn3O4 nanoparticles via a facile gel formation route and study of their phase and structural transformation with distinct surface morphology upon heat treatment, J. Saudi Chem. Soc. 21(7) (2017) 830-836. [42] H. Rahaman, S.K. Ghosh, Soft-templated synthesis of Mn3O4 microdandelions for the degradation of alizarin red under visible light irradiation, RSC Adv. 6(6) (2016) 4531-4539. [43] S.H. Lai, Y.B. Chen, N. Li, H. Su, S.H. Guo, Novel gC3N4 wrapped γ-Al2O3 microspheres heterojunction for efficient photocatalytic application under visible light irradiation, J. Mater. Sci.: Mater. Electron. 29(6) (2018) 4509-4516. [44] A. Amirsalari, S.F. Shayesteh, Effects of pH and calcination temperature on structural and optical properties of alumina nanoparticles, Superlattices Microstruct. 82(2015) 507-524. [45] V.B. Mikhailik, H. Kraus, D. Wahl, M.S. Mykhaylyk, Luminescence studies of Tidoped Al2O3 using vacuum ultraviolet synchrotron radiation, Appl. Phys. Lett. 86(10) (2005) 101909. [46] Y. Zhou, L. Guo, W. Shi, X. Zou, B. Xiang, S. Xing, Rapid production of Mn3O4/rGO as an efficient electrode material for supercapacitor by flame plasma, Materials 11(6) (2018) 881. [47] C. Cummins, A. Gangnaik, R.A. Kelly, D. Borah, J. O’Connell, N. Petkov, M.A. Morris, Aligned silicon nanofins via the directed self-assembly of PS-b-P4VP block copolymer and metal oxide enhanced pattern transfer, Nanoscale 7(15) (2015) 6712-6721. [48] S. Shamaila, A.K.L. Sajjad, F. Chen, J. Zhang, Study on highly visible light active Bi2O3 loaded ordered mesoporous titania, Appl. Catal. B: Environ. 94(3-4) (2010) 272-280. [49] S. Das, S. Patnaik, K.M. Parida, Fabrication of a Au-loaded CaFe2O4/CoAl LDH p-n junction based architecture with stoichiometric H2& O2 generation and Cr (VI) reduction under visible light, Inorg. Chem. Front. 6(1) (2019) 94-109. [50] L. Gnanasekaran, R. Hemamalini, R. Saravanan, K. Ravichandran, F. Gracia, S. Agarwal, V.K. Gupta, Synthesis and characterization of metal oxides (CeO2, CuO, NiO, Mn3O4, SnO2 and ZnO) nanoparticles as photo catalysts for degradation of textile dyes, J. Photochem. Photobiol., B 173(2017) 43-49. [51] S.A.K. Leghari, S. Sajjad, J. Zhang, A time saving and cost effective route for metal oxides activation, RSC Adv. 4(10) (2014) 5248-5253. [52] D.C. Kalyani, S.S. Phugare, U.U. Shedbalkar, J.P. Jadhav, Purification and characterization of a bacterial peroxidase from the isolated strain Pseudomonas sp. SUK1 and its application for textile dye decolorization, Ann. Microbiol. 61(3) (2011) 483-491. [53] V. Murali, S.A. Ong, L.N. Ho, Y.S. Wong, Evaluation of integrated anaerobic-aerobic biofilm reactor for degradation of azo dye methyl orange, Bioresour. Technol. 143(2013) 104-111. [54] A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst, J. Hazard. Mater. 177(1-3) (2010) 781-791. |