[1] X. Wang, U. Kruger, G.W. Irwin, Process monitoring approach using fast moving window PCA, Ind. Eng. Chem. Res. 44(2005) 5691-5702. [2] G. Li, S.J. Qin, D.H. Zhou, Geometric properties of partial least squares for process monitoring, Automatica 46(2010) 204-210. [3] J.M. Lee, C.K. Yoo, I.B. Lee, Statistical process monitoring with independent component analysis, J. Process Contr. 14(2004) 467-485. [4] X.F. Yuan, J. Zhou, B. Huang, Y.L. Wang, C.H. Yang, W.H. Gui, Hierarchical quality-relevant feature representation for soft sensor modeling:A novel deep learning strategy, IEEE T. Ind. Inform. 16(2020) 3721-3730. [5] X.F. Yuan, C. Ou, Y.L. Wang, C.H. Yang, W.H. Gui, A layer-wise data augmentation strategy for deep learning networks and its soft sensor application in an industrial hydrocracking process, IEEE Trans. Neural Netw. Learn Syst. 251(2019) 113382. [6] Z.P. Zhang, J.S. Zhao, A deep belief network based fault diagnosis model for complex chemical processes, Comput. Chem. Eng. 107(2017) 395-407. [7] H. Wu, J.S. Zhao, Deep convolutional neural network model based chemical process fault diagnosis, Comput. Chem. Eng. 115(2018) 185-197. [8] X.F. Yuan, L. Li, Y. Shardt, Y.L. Wang, C.H. Yang, Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development, IEEE T. Ind. Electron. 68(5) (2021) 4404-4414. [9] M. Joswiak, Y. Peng, I. Castillo, L.H. Chiang, Dimensionality reduction for visualizing industrial chemical process data, Control Eng. Pract. 93(2019) 104189. [10] J.B. Tenenbaum, V. de Silva, J.C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science 290(2000) 2319-2323. [11] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput. 15(2003) 1373-1396. [12] L.V.D. Maaten, Learning a parametric embedding by preserving local structure, in:International Conference on Artificial Intelligence and Statistics, 2009, 384-391. [13] A.A. Cuadrado, I. Diaz, A.B. Diez, F. Obeso, J.A. Gonzalez, Visual data mining and monitoring in steel processes, In:37th IAS Annual Meeting. Pittsburgh, PA, USA (2002) 493-500. [14] H.Y. Yu, F. Khan, V. Garaniya, A. Ahmad, Self-organizing map based fault diagnosis technique for non-Gaussian processes, Ind. Eng. Chem. Res. 53(2014) 8831-8843. [15] G. Robertson, M.C. Thomas, J.A. Romagnoli, Topological preservation techniques for nonlinear process monitoring, Comput. Chem. Eng. 76(2015) 1-16. [16] H.L. Garcia, L.M. Gonzalez, Self-organizing map and clustering for wastewater treatment monitoring, Eng. Appl. Artif. Intel. 17(2004) 215-225. [17] Z.G. Feng, T. Xu, Comparison of SOM and PCA-SOM in fault diagnosis of ground-testing bed, Procedia Engineer 15(2011) 1271-1276. [18] X.Y. Chen, X.F. Yan, Using improved self-organizing map for fault diagnosis in chemical industry process, Chem. Eng. Res. Des. 90(2012) 2262-2277. [19] X.Y. Chen, X.F. Yan, Fault diagnosis in chemical process based on selforganizing map integrated with fisher discriminant analysis, Chinese J. Chem. Eng. 21(2013) 382-387. [20] Y. Song, Q.C. Jiang, X.F. Yan, M.J. Guo, A multi-SOM with canonical variate analysis for chemical process monitoring and fault diagnosis, J. Chem. Eng. Jpn. 47(2014) 40-51. [21] K. Eberhardt, C. Beleites, S. Marthandan, C. Matthäus, S. Diekmann, J. Popp, Raman and infrared spectroscopy distinguish replicative senescent from proliferating primary human fibroblast cells by detecting spectral differences mainly due to biomolecular alterations, Anal. Chem. 89(2017) 2937-2947. [22] N.P. Chien, L.K. Lautz, Discriminant analysis as a decision-making tool for geochemically fingerprinting sources of groundwater salinity, Sci. Total Environ. 618(2017) 379-387. [23] H. Jeong, Y. Ohno, Symmetric lifting posture recognition of skilled experts with linear discriminant analysis by center-of-pressure velocity, Intel. Serv. Robot. 10(2017) 323-332. [24] J. Portillo-Portillo, R. Leyva, V. Sanchez, G. Sanchez-Perez, H. Perez-Meana, J. Olivares-Mercado, K. Toscano-Medina, M. Nakano-Miyatake, A view-invariant gait recognition algorithm based on a joint-direct linear discriminant analysis, Appl. Intelligence 48(2017) 1200-1217. [25] M. Loog, R.P.W. Duin, R. Haeb-Umbach, Multiclass linear dimension reduction by weighted pairwise Fisher criteria, IEEE T. Pattern Anal. 23(2001) 762-766. [26] L. Xu, A. Iosifidis, M. Gabbouj, Weighted linear discriminant analysis based on class saliency information, In:201825th IEEE International Conferences on Image Processing, Athens, Greece (2018) 2306-2310. [27] W. Bian, D. Tao, Max-Min distance analysis by using sequential SDP relaxation for dimension reduction, IEEE Trans. Pattern Anal. Mach. Intell. 33(2011) 1037-1050. [28] H. Li, T. Jiang, K. Zhang, Efficient and robust feature extraction by maximum margin criterion, IEEE Trans. Neural Networks 17(2006) 157-165. [29] S. Kumar, M.K. Bhuyan, B.C. Lovell, Y. Iwahori, Hierarchical uncorrelated multiview discriminant locality preserving projection for multiview facial expression recognition, J. Vis. Commun. Image Represent. 54(2018) 171-181. [30] L. Zhuo, B. Cheng, J. Zhang, A comparative study of dimensionality reduction methods for large-scale image retrieval, Neurocomputing 141(2014) 202-210. [31] H. Ali, M. Hariharan, S. Yaacob, A.H. Adom, Facial emotion recognition using empirical mode decomposition, Expert Syst. Appl. 42(2015) 1261-1277. [32] A. Ortiz, J.M. Gorriz, J. Ramirez, D. Salas-Gonzalez, Improving MR brain image segmentation using self-organizing maps and entropy-gradient clustering, Inf. Sci. 262(2017) 117-136. [33] W.P. Tsai, S.P. Huang, S.T. Cheng, K.T. Shao, F.J. Chang, A data-mining framework for exploring the multi-relation between fish species and water quality through self-organizing map, Sci. Total Environ. 579(2017) 474-483. [34] G. Abaei, A. Selamat, H. Fujita, An empirical study based on semi-supervised hybrid self-organizing map for software fault prediction, Knowl.-Based Syst. 74(2015) 28-39. [35] A. Singhal, D.E. Seborg, Pattern matching in multivariate time series databases using a moving-window approach, Ind. Eng. Chem. Res. 41(2002) 3822-3838. [36] M.C. Johannesmeyer, A. Singhal, D.E. Seborg, Pattern matching in historical data, AIChE J. 48(2002) 2022-2038. [37] X.G. Deng, X.M. Tian, Sparse kernel locality preserving projection and its application in nonlinear process fault detection, Chinese J. Chem. Eng. 21(2013) 163-170. |