[1] X.P. Jia, Z.W. Li, F. Wang, Y. Qian, Integrated sustainability assessment for chemical processes, Clean Technol. Environ. Policy 18 (5) (2016) 1295-1306. 10.1007/s10098-015-1075-x [2] F. Wang, S.Q. Wang, G. Xin, Z.W. Li, R.R. Tan, X.P. Jia, Integrated sustainability assessment of chemical production chains, J. Clean. Prod. 219 (2019) 894-905. 10.1016/j.jclepro.2019.02.079 [3] X.P. Jia, G. Xin, Y. Qian, Y. Qian, Sectoral co-control of air pollutants:Case of a chlor-alkali/polyvinyl chloride sector in China, J. Clean. Prod. 112 (2016) 1667-1675. 10.1016/j.jclepro.2015.01.074 [4] H.L. Huo, X.L. Liu, Z. Wen, G.F. Lou, R.F. Dou, F.Y. Su, W.N. Zhou, Z.Y. Jiang, Case study of a novel low rank coal to calcium carbide process based on techno-economic assessment, Energy 228 (2021) 120566. 10.1016/j.energy.2021.120566 [5] X.K. Zhang, Z.X. Tong, Y.L. He, X. Hu, Influence of feed architecture on heat and mass transfer in calcium carbide electric furnace, Int. J. Heat Mass Transf. 164 (2021) 120593. 10.1016/j.ijheatmasstransfer.2020.120593 [6] J. Yang, L.P. Ma, H.P. Liu, Y. Wei, B. Keomounlath, Q.X. Dai, Thermodynamics and kinetics analysis of Ca-looping for CO2 capture:Application of carbide slag, Fuel 242 (2019) 1-11. 10.1016/j.fuel.2019.01.018 [7] Y. Zhou, Y.N. Chen, W.L. Li, K.K. Li, Z.Y. Jia, J. Sun, C.W. Zhao, High-temperature CO2 uptake and mechanical strength enhancement of the calcium aluminate cement-bound carbide slag pellets, Energy Fuels 35 (9) (2021) 8117-8125.https://doi.org/10.1021/acs.energyfuels.1c00355 [8] L. Kainiemi, S. Eloneva, A. Toikka, J. Levänen, M. Järvinen, Opportunities and obstacles for CO2 mineralization:CO2 mineralization specific frames in the interviews of Finnish carbon capture and storage (CCS) experts, J. Clean. Prod. 94 (2015) 352-358. 10.1016/j.jclepro.2015.02.016 [9] H. Geerlings, R. Zevenhoven, CO2 mineralization-bridge between storage and utilization of CO2, Annu Rev Chem Biomol Eng 4 (2013) 103-117.https://pubmed.ncbi.nlm.nih.gov/23452171/ [10] S.Ó. Snæbjörnsdóttir, B. Sigfússon, C. Marieni, D. Goldberg, S.R. Gislason, E.H. Oelkers, Carbon dioxide storage through mineral carbonation, Nat. Rev. Earth Environ. 1 (2) (2020) 90-102.https://doi.org/10.1038/s43017-019-0011-8 [11] A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, M.M. Maroto-Valer, A review of mineral carbonation technologies to sequester CO2, Chem. Soc. Rev., 43 (2014) 8049-8080 [12] V. Romanov, Y. Soong, C. Carney, G.E. Rush, B. Nielsen, W. O'Connor, Mineralization of carbon dioxide:A literature review, Chembioeng Rev. 2 (4) (2015) 231-256.https://doi.org/10.1002/cben.201500002 [13] P.K. Naraharisetti, T.Y. Yeo, J. Bu, New classification of CO2 mineralization processes and economic evaluation, Renew. Sustain. Energy Rev. 99 (2019) 220-233. 10.1016/j.rser.2018.10.008 [14] S. Eloneva, P. Mannisto, A. Said, C.J. Fogelholm, R. Zevenhoven, Ammonium salt-based steelmaking slag carbonation:Precipitation of CaCO3 and ammonia losses assessment, Greenh. Gases Sci. Technol. 1 (4) (2011) 305-311.https://doi.org/10.1002/ghg.37 [15] S.Y. Pan, Y.H. Chen, L.S. Fan, H. Kim, X. Gao, T.C. Ling, P.C. Chiang, S.L. Pei, G.W. Gu, CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction, Nat. Sustain. 3 (5) (2020) 399-405.https://doi.org/10.1038/s41893-020-0486-9 [16] S. Lee, J.W. Kim, S. Chae, J.H. Bang, S.W. Lee, CO2 sequestration technology through mineral carbonation:An extraction and carbonation of blast slag, J. CO2 Util. 16 (2016) 336-345. 10.1016/j.jcou.2016.09.003 [17] S.K. Seo, C.M. Kwon, F.S. Kim, C.J. Lee, Experiment and kinetic modeling for leaching of blast furnace slag using ligand, J. CO2 Util. 27 (2018) 188-195. 10.1016/j.jcou.2018.07.015 [18] S. Eloneva, S. Teir, J. Salminen, C.J. Fogelholm, R. Zevenhoven, Fixation of CO2 by carbonating calcium derived from blast furnace slag, Energy 33 (9) (2008) 1461-1467. 10.1016/j.energy.2008.05.003 [19] C. Jeon, S. Park, J.H. Bang, S. Chae, K. Song, S.W. Lee, Nonpolar surface modification using fatty acids and its effect on calcite from mineral carbonation of desulfurized gypsum, Coatings 8 (1) (2018) 43.https://doi.org/10.3390/coatings8010043 [20] B. Wang, Z.H. Pan, H.G. Cheng, Z.E. Zhang, F.Q. Cheng, A review of carbon dioxide sequestration by mineral carbonation of industrial byproduct gypsum, J. Clean. Prod. 302 (2021) 126930. 10.1016/j.jclepro.2021.126930 [21] O. Rahmani, CO2 sequestration by indirect mineral carbonation of industrial waste red gypsum, J. CO2 Util. 27 (2018) 374-380. 10.1016/j.jcou.2018.08.017 [22] W. Liu, S. Su, K. Xu, Q.D. Chen, J. Xu, Z.J. Sun, Y. Wang, S. Hu, X.L. Wang, Y.T. Xue, J. Xiang, CO2 sequestration by direct gas-solid carbonation of fly ash with steam addition, J. Clean. Prod. 178 (2018) 98-107. 10.1016/j.jclepro.2017.12.281 [23] A. Ćwik, I. Casanova, K. Rausis, N. Koukouzas, K. Zarębska, Carbonation of high-calcium fly ashes and its potential for carbon dioxide removal in coal fired power plants, J. Clean. Prod. 202 (2018) 1026-1034. 10.1016/j.jclepro.2018.08.234 [24] C.Y. Wang, W.J. Bao, Z.C. Guo, H.Q. Li, Carbon dioxide sequestration via steelmaking slag carbonation in alkali solutions:Experimental investigation and process evaluation, Acta Metall. Sin. Engl. Lett. 31 (7) (2018) 771-784. 10.1007/s40195-017-0694-0 [25] H.N. Zhang, C. Gao, B. Chen, J. Tang, D.F. He, A.J. Xu, Stainless steel tailings accelerated direct carbonation process at low pressure:Carbonation efficiency evaluation and chromium leaching inhibition correlation analysis, Energy 155 (2018) 772-781. 10.1016/j.energy.2018.05.058 [26] C.P. Gao, J.X. Cao, L. Yang, Q.W. Zhou, A study on preparation of spherical and ultrafine calcium carbonate from carbide slag treated by HCl, J. Guizhou Univ. Nat. Sci. Ed. (2009) 26(3)90-94 [27] M. Altiner, Use of Taguchi approach for synthesis of calcite particles from calcium carbide slag for CO2 fixation by accelerated mineral carbonation, Arab. J. Chem. 12 (4) (2019) 531-540. 10.1016/j.arabjc.2018.02.015 [28] S.Z. Lv, S.Y. Zhao, M.M. Liu, P.P. Wu, Preparation of calcium carbonate by calcium carbide residue, Adv. Mater. Res. 864-867 (2013) 1963-1967.https://doi.org/10.4028/www.scientific.net/amr.864-867.1963 [29] B.J. Yang, Z.Q. Shao, D.X. Zhang, B.N. Wang, A mild route for the preparation of calcium carbonate rod bundles in large scale from carbide slag, Micro Nano Lett. 16 (3) (2021) 187-193.https://doi.org/10.1049/mna2.12006 [30] Y.J. Li, R.Y. Sun, C.T. Liu, H.L. Liu, C.M. Lu, CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles, Int. J. Greenh. Gas Control 9 (2012) 117-123. 10.1016/j.ijggc.2012.03.012 [31] Y.J. Li, M.Y. Su, X. Xie, S.M. Wu, C.T. Liu, CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis, Appl. Energy 145 (2015) 60-68. 10.1016/j.apenergy.2015.01.061 [32] Y.J. Wang, B.F. Ye, Z.C. Hong, Y.H. Wang, M.H. Liu, Uniform calcite mircro/nanorods preparation from carbide slag using recyclable citrate extractant, J. Clean. Prod. 253 (2020) 119930. 10.1016/j.jclepro.2019.119930 [33] J. Yang, S.Y. Liu, L.P. Ma, S.Q. Zhao, H.P. Liu, Q.X. Dai, Y.C. Yang, C.H. Xu, X. Xin, X.Q. Zhang, J.Y. Liu, Mechanism analysis of carbide slag capture of CO2 via a gas-liquid-solid three-phase fluidization system, J. Clean. Prod. 279 (2021) 123712. 10.1016/j.jclepro.2020.123712 [34] D.W. Keith, G. Holmes, D. St Angelo, K. Heidel, A process for capturing CO2 from the atmosphere, Joule 2 (8) (2018) 1573-1594. 10.1016/j.joule.2018.05.006 [35] E. Nduagu, J. Fagerlund, R. Zevenhoven, Contribution of iron to the energetics of CO2 sequestration in Mg-silicates-based rock, Energy Convers. Manag. 55 (2012) 178-186. 10.1016/j.enconman.2011.10.023 [36] M. Slotte, I. Romão, R. Zevenhoven, Integration of a pilot-scale serpentinite carbonation process with an industrial lime kiln, Energy 62 (2013) 142-149. 10.1016/j.energy.2013.07.009 [37] I. Romão, M. Slotte, L.M. Gando-Ferreira, R. Zevenhoven, CO2 sequestration with magnesium silicates-Exergetic performance assessment, Chem. Eng. Res. Des. 92 (12) (2014) 3072-3082. 10.1016/j.cherd.2014.05.016 [38] P.K. Naraharisetti, T.Y. Yeo, J. Bu, Factors influencing CO2and energy penalties of CO2Mineralization processes, ChemPhysChem 18 (22) (2017) 3189-3202.https://doi.org/10.1002/cphc.201700565 [39] Y. Wu, F. Wu, G.P. Hu, N.R. Mirza, G.W. Stevens, K.A. Mumford, Modelling of a post-combustion carbon dioxide capture absorber using potassium carbonate solvent in Aspen Custom Modeller, Chin. J. Chem. Eng. 26 (11) (2018) 2327-2336. 10.1016/j.cjche.2018.06.005 [40] J.Q. Gao, C. Li, W.Z. Liu, J.P. Hu, L. Wang, Q. Liu, B. Liang, H.R. Yue, G.Q. Zhang, D.M. Luo, S.Y. Tang, Process simulation and energy integration in the mineral carbonation of blast furnace slag, Chin. J. Chem. Eng. 27 (1) (2019) 157-167. 10.1016/j.cjche.2018.04.012 [41] H.L. Que, C.C. Chen, Thermodynamic modeling of the NH3-CO2-H2O system with electrolyte NRTL model, Ind. Eng. Chem. Res. 50 (19) (2011) 11406-11421.https://doi.org/10.1021/ie201276m [42] J.W. Yu, S.J. Wang, Modeling analysis of energy requirement in aqueous ammonia based CO2 capture process, Int. J. Greenh. Gas Control 43 (2015) 33-45. 10.1016/j.ijggc.2015.10.010 [43] M.K. Zhang, Y.C. Guo, Process simulations of NH3 abatement system for large-scale CO2 capture using aqueous ammonia solution, Int. J. Greenh. Gas Control 18 (2013) 114-127. 10.1016/j.ijggc.2013.07.005 [44] S.H. Zhou, L.Y. Gong, X.Y. Liu, S.Q. Shen, Mathematical modeling and performance analysis for multi-effect evaporation/multi-effect evaporation with thermal vapor compression desalination system, Appl. Therm. Eng. 159 (2019) 113759. 10.1016/j.applthermaleng.2019.113759 [45] M.Z. Hauschild, O. Jolliet, M.A.J. Huijbregts, A bright future for addressing chemical emissions in life cycle assessment, Int. J. Life Cycle Assess. 16 (8) (2011) 697-700. 10.1007/s11367-011-0320-8 [46] M.A. Curran, Life cycle assessment:An international experience, Environ. Prog. 19 (2) (2000) 65-71.https://doi.org/10.1002/ep.670190204 [47] D.N. Chang, C.K.M. Lee, C.H. Chen, Review of life cycle assessment towards sustainable product development, J. Clean. Prod. 83 (2014) 48-60. 10.1016/j.jclepro.2014.07.050 [48] T.T. da Cruz, J.A. Perrella Balestieri, J.M. de Toledo Silva, M.R.N. Vilanova, O.J. Oliveira, I. Ávila, Life cycle assessment of carbon capture and storage/utilization:From current state to future research directions and opportunities, Int. J. Greenh. Gas Control 108 (2021) 103309. 10.1016/j.ijggc.2021.103309 [49] X.Q. Han, N.N. Chen, J.J. Yan, J.P. Liu, M. Liu, S. Karellas, Thermodynamic analysis and life cycle assessment of supercritical pulverized coal-fired power plant integrated with No.0 feedwater pre-heater under partial loads, J. Clean. Prod. 233 (2019) 1106-1122. 10.1016/j.jclepro.2019.06.159 [50] L. Alting, Life cycle engineering and design, CIRP Ann. 44 (2) (1995) 569-580. 10.1016/S0007-8506(07)60504-6 [51] Y. Kim, S.R. Lim, K.A. Jung, J.M. Park, Process-based life cycle CO2 assessment of an ammonia-based carbon capture and storage system, J. Ind. Eng. Chem. 76 (2019) 223-232. 10.1016/j.jiec.2019.03.044 [52] R. Liu, X.L. Wang, S.W. Gao, CO2 capture and mineralization using carbide slag doped fly ash, Greenh. Gases Sci. Technol. 10 (1) (2020) 103-115.https://doi.org/10.1002/ghg.1934 [53] G.R. Chu, C. Li, W.Z. Liu, G.Q. Zhang, H.R. Yue, B. Liang, Y. Wang, D.M. Luo, Facile and cost-efficient indirect carbonation of blast furnace slag with multiple high value-added products through a completely wet process, Energy 166 (2019) 1314-1322. 10.1016/j.energy.2018.10.128 [54] Q.J. Chen, W.J. Ding, H.J. Sun, T.J. Peng, Mineral carbonation of yellow phosphorus slag and characterization of carbonated product, Energy 188 (2019) 116102. 10.1016/j.energy.2019.116102 [55] W.Z. Liu, S. Yin, D.M. Luo, G.Q. Zhang, H.R. Yue, B. Liang, L.M. Wang, C. Li, Optimising the recovery of high-value-added ammonium alum during mineral carbonation of blast furnace slag, J. Alloys Compd. 774 (2019) 1151-1159. 10.1016/j.jallcom.2018.09.392 [56] A.M. Elias, R. de Campos Giordano, A.R. Secchi, F.F. Furlan, Integrating pinch analysis and process simulation within equation-oriented simulators, Comput. Chem. Eng. 130 (2019) 106555. 10.1016/j.compchemeng.2019.106555 [57] K.F. Zhang, Z.L. Liu, S.B. Huang, Y.X. Li, Process integration analysis and improved options for an MEA CO2 capture system based on the pinch analysis, Appl. Therm. Eng. 85 (2015) 214-224 |