[1] M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the valorization of exhaust carbon:from CO2 to chemicals, materials, and fuels. technological use of CO2, Chem. Rev. 114 (3) (2014) 1709-1742.https://pubmed.ncbi.nlm.nih.gov/24313306/ [2] S. Das, J. Pérez-Ramírez, J.L. Gong, N. Dewangan, K. Hidajat, B.C. Gates, S. Kawi, Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2, Chem. Soc. Rev. 49 (10) (2020) 2937-3004.https://doi.org/10.1039/c9cs00713j [3] J. Ma, N.N. Sun, X.L. Zhang, N. Zhao, F.K. Xiao, W. Wei, Y.H. Sun, A short review of catalysis for CO2 conversion, Catal. Today 148 (3-4) (2009) 221-231.http://dx.doi.org/10.1016/j.cattod.2009.08.015 [4] K. Chen, H.H. Fang, S. Wu, X. Liu, J.W. Zheng, S. Zhou, X.P. Duan, Y.C. Zhuang, S. Chi Edman Tsang, Y.Z. Yuan, CO2 hydrogenation to methanol over Cu catalysts supported on La-modified SBA-15:the crucial role of Cu-LaOx interfaces, Appl. Catal. B Environ. 251 (2019) 119-129.http://dx.doi.org/10.1016/j.apcatb.2019.03.059 [5] Y.H. Wang, W.G. Gao, K.Z. Li, Y.E. Zheng, Z.H. Xie, W. Na, J.G. Chen, H. Wang, HStrong evidence of the role of H2O in affecting methanol selectivity from CO 2 hydrogenation over Cu-ZnO-ZrO 2 [6] Z.S. Shi, Q.Q. Tan, D.F. Wu, OA novel core-shell structured CuIn@SiO 2 catalyst for CO 2 hydrogenation to methanol, AIChE J 65 (3) [7] M.J. Zhang, Y.W. Yang, A.T. Li, D.W. Yao, Y.Q. Gao, B.A. Fayisa, M.Y. Wang, S.Y. Huang, J. Lv, Y. Wang, X.B. Ma, Nanoflower-like Cu/SiO 2 catalyst for hydrogenation of ethylene carbonate to methanol and ethylene glycol:enriching H2 adsorption, ChemCatChem 12 (14) (2020) 3670-3678 [8] Z. Han, L. Rong, J. Wu, L. Zhang, Z. Wang, K. Ding, Catalytic hydrogenation of cyclic carbonates:a practical approach from CO2 and epoxides to methanol and diols, Angew. Chem. Int. Ed., 51 (2012) 13041-13045.https://doi.org/10.1002/cctc.202000365 [9] W. Chen, T.Y. Song, J.X. Tian, P. Wu, X.H. Li, An efficient Cu-based catalyst for the hydrogenation of ethylene carbonate to ethylene glycol and methanol, Catal. Sci. Technol. 9 (23) (2019) 6749-6759 [10] X. Zhang, J.X. Liu, B. Zijlstra, I.A.W. Filot, Z.Y. Zhou, S.G. Sun, E.J.M. Hensen, Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol, Nano Energy 43 (2018) 200-209.http://dx.doi.org/10.1016/j.nanoen.2017.11.021 [11] Y. Wang, Y.L. Shen, Y.J. Zhao, J. Lv, S.P. Wang, X.B. Ma, Insight into the balancing effect of active Cu species for hydrogenation of carbon-oxygen bonds, ACS Catal. 5 (10) (2015) 6200-6208.https://doi.org/10.1021/acscatal.5b01678 [12] D.W. Yao, Y. Wang, Y. Li, Y.J. Zhao, J. Lv, X.B. Ma, A high-performance nanoreactor for carbon-oxygen bond hydrogenation reactions achieved by the morphology of nanotube-assembled hollow spheres, ACS Catal. 8 (2) (2018) 1218-1226.http://dx.doi.org/10.1021/acscatal.7b03026 [13] X. Chen, Y.Y. Cui, C. Wen, B. Wang, W.L. Dai, Continuous synthesis of methanol:heterogeneous hydrogenation of ethylene carbonate over Cu/HMS catalysts in a fixed bed reactor system, Chem. Commun. 51 (72) (2015) 13776-13778 [14] H.L. Liu, Z.W. Huang, Z.B. Han, K.L. Ding, H.C. Liu, C.G. Xia, J. Chen, Efficient production of methanol and diols via the hydrogenation of cyclic carbonates using copper-silica nanocomposite catalysts, Green Chem. 17 (8) (2015) 4281-4290.https://doi.org/10.1039/c5gc00810g [15] C. Lian, F.M. Ren, Y.X. Liu, G.F. Zhao, Y.J. Ji, H.P. Rong, W. Jia, L. Ma, H.Y. Lu, D.S. Wang, Y.D. Li, Heterogeneous selective hydrogenation of ethylene carbonate to methanol and ethylene glycol over a copper chromite nanocatalyst, Chem. Commun. (Camb) 51 (7) (2015) 1252-1254 [16] J. Kim, N. Pfänder, G. Prieto, Recycling of CO2 by hydrogenation of carbonate derivatives to methanol:tuning copper-oxide promotion effects in supported catalysts, ChemSusChem 13 (8) (2020) 2043-2052.https://doi.org/10.1002/cssc.202000166 [17] F. Li, L. Wang, X. Han, P. He, Y. Cao, H. Li, Influence of support on the performance of copper catalysts for the effective hydrogenation of ethylene carbonate to synthesize ethylene glycol and methanol, RSC Adv., 6 (2016) 45894-45906 [18] F. Deng, N. Li, S. Tang, C. Liu, H. Yue, B. Liang, Evolution of active sites and catalytic consequences of mesoporous MCM-41 supported copper catalysts for the hydrogenation of ethylene carbonate, Chem. Eng. J., 334 (2018) 1943-1953 [19] M. Zhou, Y. Shi, K. Ma, S. Tang, C. Liu, H. Yue, B. Liang, Nanoarray Cu/SiO2 catalysts embedded in monolithic channels for the stable and efficient hydrogenation of CO2-derived ethylene carbonate, Ind. Eng. Chem. Res., 57 (2018) 1924-1934 [20] Y. Ding, J. Tian, W. Chen, Y. Guan, H. Xu, X. Li, H. Wu, P. Wu, One-pot synthesized core/shell structured zeolite@copper catalysts for selective hydrogenation of ethylene carbonate to methanol and ethylene glycol, Green Chem., 21 (2019) 5414-5426.https://doi.org/10.1039/c6ra06464g [21] Y. Yang, D. Yao, M. Zhang, A. Li, Y. Gao, B.A. Fayisa, M.-Y. Wang, S. Huang, Y. Wang, X. Ma, Efficient hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol over Mo-doped Cu/SiO2 catalyst, Catal. Today, 371 (2021) 113-119 [22] T.Y. Song, Y.Y. Qi, A.P. Jia, N. Ta, J.Q. Lu, P. Wu, X.H. Li, Continuous hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol at Cu-MoOx interface with a low H2/ester ratio, J. Catal. 399 (2021) 98-110.http://dx.doi.org/10.1016/j.jcat.2021.05.004 [23] C.J. Zhang, L.G. Wang, J.J. Liu, Y.M. Yang, P. He, Y. Cao, J.Q. Chen, H.Q. Li, Facile fabrication of ultrasmall copper species confined in mesoporous silica for chemo-selective and stable hydrogenation ethylene carbonate derived from CO2, ChemCatChem 10 (20) (2018) 4617-4628.https://doi.org/10.1002/cctc.201800828 [24] J. Ding, T. Popa, J.K. Tang, K.A.M. Gasem, M.H. Fan, Q. Zhong, Highly selective and stable Cu/SiO2 catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol, Appl. Catal. B Environ. 209 (2017) 530-542.http://dx.doi.org/10.1016/j.apcatb.2017.02.072 [25] S.T. Oyama, X.M. Zhang, J.Q. Lu, Y.F. Gu, T. Fujitani, Epoxidation of propylene with H2 and O2 in the explosive regime in a packed-bed catalytic membrane reactor, J. Catal. 257 (1) (2008) 1-4.http://dx.doi.org/10.1016/j.jcat.2008.04.023 [26] H.Y. Pan, J.R. Li, J.Q. Lu, G.M. Wang, W.H. Xie, P. Wu, X.H. Li, Selective hydrogenation of cinnamaldehyde with PtFex/Al2O3@SBA-15 catalyst:enhancement in activity and selectivity to unsaturated alcohol by Pt-FeOx and Pt-Al2O3@SBA-15 interaction, J. Catal. 354 (2017) 24-36.http://dx.doi.org/10.1016/j.jcat.2017.07.026 [27] X.L. Yan, C. Yuan, J.H. Bao, S. Li, D.Z. Qi, Q.Q. Wang, B.R. Zhao, T. Hu, L.M. Fan, B.B. Fan, R.F. Li, F.F. Tao, Y.X. Pan, A Ni-based catalyst with enhanced Ni-support interaction for highly efficient CO methanation, Catal. Sci. Technol. 8 (14) (2018) 3474-3483.https://doi.org/10.1039/c8cy00605a [28] J.X. Tian, W. Chen, P. Wu, Z.R. Zhu, X.H. Li, Cu-Mg-Zr/SiO2 catalyst for the selective hydrogenation of ethylene carbonate to methanol and ethylene glycol, Catal. Sci. Technol. 8 (10) (2018) 2624-2635.https://doi.org/10.1039/c8cy00023a [29] Y.J. Zhao, H.H. Zhang, Y.X. Xu, S.N. Wang, Y. Xu, S.P. Wang, X.B. Ma, Interface tuning of Cu+/Cu0 by zirconia for dimethyl oxalate hydrogenation to ethylene glycol over Cu/SiO2 catalyst, J. Energy Chem. 49 (2020) 248-256.http://dx.doi.org/10.1016/j.jechem.2020.02.038 [30] Y.J. Zhao, S.M. Li, Y. Wang, B. Shan, J. Zhang, S.P. Wang, X.B. Ma, Efficient tuning of surface copper species of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol, Chem. Eng. J. 313 (2017) 759-768.http://dx.doi.org/10.1016/j.cej.2016.12.027 [31] L. Liao, L.D. Chen, R.P. Ye, X.L. Tang, J. Liu, Robust nickel silicate catalysts with high Ni loading for CO2 methanation, Chem. Asian J. 16 (6) (2021) 678-689.https://doi.org/10.1002/asia.202001384 [32] Y.J. Zhao, S. Zhao, Y.C. Geng, Y.L. Shen, H.R. Yue, J. Lv, S.P. Wang, X.B. Ma, Ni-containing Cu/SiO2 catalyst for the chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate, Catal. Today 276 (2016) 28-35.http://dx.doi.org/10.1016/j.cattod.2016.01.053 [33] M. Ahmadi, F. Behafarid, C. Cui, P. Strasser, B.R. Cuenya, Long-range segregation phenomena in shape-selected bimetallic nanoparticles:chemical state effects, ACS Nano 7 (10) (2013) 9195-9204.https://pubmed.ncbi.nlm.nih.gov/24015721/ [34] Y. Yao, D.W. Goodman, In situ IR spectroscopic studies of Ni surface segregation induced by CO adsorption on Cu-Ni/SiO2 bimetallic catalysts, Phys. Chem. Chem. Phys. 16 (8) (2014) 3823-3829.https://pubmed.ncbi.nlm.nih.gov/24435048/ [35] W.T. Lee, A.P. Van Muyden, F.D. Bobbink, Z.J. Huang, P.J. Dyson, Indirect CO2 methanation:hydrogenolysis of cyclic carbonates catalyzed by Ru-modified zeolite produces methane and diols, Angew. Chem. Int. Ed. 58 (2) (2019) 557-560.https://doi.org/10.1002/anie.201811086 |