[1] X.Q. Lin, Y. Liu, X.J. Zheng, N. Qureshi, High-efficient cellulosic butanol production from deep eutectic solvent pretreated corn stover without detoxification, Ind. Crop. Prod. 162 (2021) 113258 [2] S.S. Chen, T. Maneerung, D.C.W. Tsang, Y.S. Ok, C.H. Wang, Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts, Chem. Eng. J. 328 (2017) 246-273 [3] C. Xu, E. Paone, D. Rodríguez-Padrón, R. Luque, F. Mauriello, Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural, Chem. Soc. Rev. 49 (13) (2020) 4273-4306 [4] C.B.T.L. Lee, T.Y. Wu, A review on solvent systems for furfural production from lignocellulosic biomass, Renew. Sustain. Energy Rev. 137 (2021) 110172 [5] X.Y. Li, R. Xu, J.X. Yang, S.X. Nie, D. Liu, Y. Liu, C.L. Si, Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation, Ind. Crop. Prod. 130 (2019) 184-197 [6] H. Chang, I. Bajaj, A.H. Motagamwala, A. Somasundaram, G.W. Huber, C.T. Maravelias, J.A. Dumesic, Sustainable production of 5-hydroxymethyl furfural from glucose for process integration with high fructose corn syrup infrastructure, Green Chem. 23 (9) (2021) 3277-3288 [7] H. Li, Y. Zhong, L.X. Wang, Q. Deng, J. Wang, Z.L. Zeng, X.X. Cao, S.G. Deng, Functionalized metal-organic frameworks with strong acidity and hydrophobicity as an efficient catalyst for the production of 5-hydroxymethylfurfural, Chin. J. Chem. Eng. 33 (2021) 167-174 [8] H.Y. Wang, C.H. Zhu, D. Li, Q.Y. Liu, J. Tan, C.G. Wang, C.L. Cai, L.L. Ma, Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran, Renew. Sustain. Energy Rev. 103 (2019) 227-247 [9] Q.D. Hou, X.H. Qi, M.N. Zhen, H.L. Qian, Y.F. Nie, C.Y.L. Bai, S.Q. Zhang, X.Y. Bai, M.T. Ju, Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural, Green Chem. 23 (1) (2021) 119-231 [10] S.M. Kang, J.X. Fu, G. Zhang, From lignocellulosic biomass to levulinic acid:A review on acid-catalyzed hydrolysis, Renew. Sustain. Energy Rev. 94 (2018) 340-362 [11] C.L. Chen, L.C. Wang, B. Zhu, Z.Q. Zhou, S.I. El-Hout, J. Yang, J. Zhang, 2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural:Catalysts, processes and reaction mechanism, J. Energy Chem. 54 (2021) 528-554 [12] L. Hu, L. Lin, Z. Wu, S.Y. Zhou, S.J. Liu, Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals, Renew. Sustain. Energy Rev. 74 (2017) 230-257 [13] B. Hu, L. Warczinski, X.Y. Li, M.H. Lu, J. Bitzer, M. Heidelmann, T. Eckhard, Q. Fu, J. Schulwitz, M. Merko, M.S. Li, W. Kleist, C. Hättig, M. Muhler, B.X. Peng, Formic acid-assisted selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over bifunctional Pd nanoparticles supported on N-doped mesoporous carbon, Angew. Chem. Int. Ed. 60 (12) (2021) 6807-6815 [14] F. Yang, J.J. Tang, R. Ou, Z.J. Guo, S.Y. Gao, Y.Z. Wang, X.Y. Wang, L. Chen, A.H. Yuan, Fully catalytic upgrading synthesis of 5-ethoxymethylfurfural from biomass-derived 5-hydroxymethylfurfural over recyclable layered-niobium-molybdate solid acid, Appl. Catal. B:Environ. 256 (2019) 117786 [15] L. Hu, Y.T. Jiang, Z. Wu, X.Y. Wang, A.Y. He, J.X. Xu, J.M. Xu, State-of-the-art advances and perspectives in the separation of biomass-derived 5-hydroxymethylfurfural, J. Clean. Prod. 276 (2020) 124219 [16] L.T. Mika, E. Cséfalvay, Á. Németh, Catalytic conversion ofcarbohydrates to initialplatform chemicals:Chemistry and sustainability, Chem. Rev. 118 (2) (2018) 505-613 [17] K. Enomoto, T. Hosoya, H. Miyafuji, High-yield production of 5-hydroxymethylfurfural from D-fructose, D-glucose, and cellulose by its in situ removal from the reaction system, Cellulose 25 (4) (2018) 2249-2257 [18] R.L. Johnson, F.A. Perras, M.P. Hanrahan, M. Mellmer, T.F. Garrison, T. Kobayashi, J.A. Dumesic, M. Pruski, A.J. Rossini, B.H. Shanks, Condensed phase deactivation of solid Brønstedacids in the dehydration of fructose to hydroxymethylfurfural, ACS Catal. 9 (12) (2019) 11568-11578 [19] H.Y. Wang, J.J. Cui, Y.L. Zhao, Z.Y. Li, J.J. Wang, Highly efficient separation of 5-hydroxymethylfurfural from imidazolium-based ionic liquids, Green Chem. 23 (1) (2021) 405-411 [20] A. Sarwono, Z. Man, A. Idris, A.S. Khan, N. Muhammad, C.D. Wilfred, Optimization of ionic liquid assisted sugar conversion and nanofiltration membrane separation for 5-hydroxymethylfurfural, J. Ind. Eng. Chem. 69 (2019) 171-178 [21] C.J. Zhou, C. Shen, K.Y. Ji, J.B. Yin, L. Du, Efficient production of 5-hydroxymethylfurfural enhanced by liquid-liquid extraction in amembrane dispersion microreactor, ACS Sustain. Chem. Eng. 6 (3) (2018) 3992-3999 [22] A.C. IJzer, E. Vriezekolk, T.DekicZivkovic, K. Nijmeijer, Adsorption kinetics of DowexTM OptiporeTM L493for the removal of the furan 5-hydroxymethylfurfural from sugar, J. Chem. Technol. Biotechnol. 91 (1) (2016) 96-104 [23] E. Valentin, H.G. Nam, P.H. Kim, H.W. Joo, H.J. Shim, Y.K. Chang, S. Mun, Application of a Dowex-50WX8 chromatographic process to the preparative-scale separation of galactose, levulinic acid, and 5-hydroxymethylfurfural in acid hydrolysate of agarose, Sep. Purif. Technol. 133 (2014) 297-302 [24] H. Park, J.W. Kim, K.B. Lee, S. Mun, Comparison of the process performances of a tandem 4-zone SMB and a single-cascade 5-zone SMB for separation of galactose, levulinic acid, and 5-hydroxymethylfurfural in agarose hydrolyzate, Sep. Purif. Technol. 237 (2020) 116357 [25] Y. Zhao, J. Xu, J. Wang, J.L. Wu, M.Z. Gao, B. Zheng, H. Xu, Q. Shi, J.X. Dong, Adsorptive separation offurfural/5-hydroxymethylfurfural in MAF-5 with ellipsoidal pores, Ind. Eng. Chem. Res. 59 (25) (2020) 11734-11742 [26] P. Dornath, W. Fan, Dehydration of fructose into furans over zeolite catalyst using carbon black as adsorbent, Microporous Mesoporous Mater. 191 (2014) 10-17 [27] W.C. Yoo, N. Rajabbeigi, E.E. Mallon, M. Tsapatsis, M.A. Snyder, Elucidating structure-properties relations for the design of highly selective carbon-based HMF sorbents, Microporous Mesoporous Mater. 184 (2014) 72-82 [28] W. Liu, F. Zheng, J. Li, A. Cooper, Anionic liquidreaction and separation process for production of hydroxymethylfurfural from sugars, AIChE J. 60 (1) (2014) 300-314 [29] M.León, T.D. Swift, V. Nikolakis, D.G. Vlachos, Adsorption of the compounds encountered in monosaccharide dehydration in zeolite beta, Langmuir 29 (22) (2013) 6597-6605 [30] C. Detoni, C.H. Gierlich, M. Rose, R. Palkovits, Selective liquid phaseadsorption of 5-hydroxymethylfurfural on nanoporous hyper-cross-linkedpolymers, ACS Sustain. Chem. Eng. 2 (10) (2014) 2407-2415 [31] J.Y. Zheng, X.D. He, C.L.Cai, J.X.Xiao, Y. Liu, Z. Chen, B.Y. Pan, X.Q. Lin, Adsorption isotherm, kinetics simulation and breakthrough analysis of 5-hydroxymethylfurfural adsorption/desorption behavior of a novel polar-modified post-cross-linked poly (divinylbenzene-co-ethyleneglycoldimethacrylate) resin, Chemosphere 239 (2020) 124732 [32] J.Y. Zheng, X.D. He, C.L.Cai, J.X.Xiao, Y. Liu, Z. Chen, B.Y. Pan, X.Q. Lin, Adsorption isotherm, kinetics simulation and breakthrough analysis of 5-hydroxymethylfurfural adsorption/desorption behavior of a novel polar-modified post-cross-linked poly (divinylbenzene-co-ethyleneglycoldimethacrylate) resin, Chemosphere 239 (2020) 124732 [33] H. Gao, L. Ding, W.Q. Li, G.F. Ma, H. Bai, L. Li, Hyper-cross-linked organic microporous polymers based on alternating copolymerization of bismaleimide, ACS Macro Lett. 5 (3) (2016) 377-381 [34] J.Y. Zheng, L. Hu, X.D. He, Y. Liu, X.J. Zheng, S.H. Tao, X.Q. Lin, evaluation of pore structure of polarity-controllable post-cross-linked adsorption resins on the adsorption performance of 5-hydroxymethylfurfural in both single- and ternary-component systems, Ind. Eng. Chem. Res. 59 (39) (2020) 17575-17586 [35] L. Hu, J.Y. Zheng, Q. Li, S.H. Tao, X.J. Zheng, X.D. Zhang, Y. Liu, X.Q. Lin, Adsorption of 5-hydroxymethylfurfural,levulinic acid, formic acid, and glucose using polymericresins modified with differentfunctional groups, ACS Omega 6 (26) (2021) 16955-16968 [36] H.M. Tang, W.Y.Li, H.S. Jiang, R.J.Lin, Z. Wang, J.H.Wu, G.J. He, P.R. Shearing, D.J.L. Brett, ZIF-8-derived hollow carbon for efficient adsorption of antibiotics, Nanomaterials 9(1)(2019)E117 [37] X.J. Zheng, X.L. Xian, L. Hu, S.H.Tao, X.D. Zhang, Y. Liu, X.Q.Lin, Efficient short-time hydrothermal depolymerization of sugarcane bagasse in one-pot for cellulosic ethanol production without solid-liquid separation, water washing, and detoxification, Bioresourc. Technol. 339 (2021) 125575 [38] C.J.Shen, H. Yu, Z.G. Wang, Synthesis of 1,3,5,7-tetrakis(4-cyanatophenyl)-adamantane and its microporous polycyanurate network for adsorption of organic vapors, hydrogen and carbon dioxide, Chem.Commun. 50 (76) (2014) 11238-11241 [39] B. Oktay, E.Çakmakçi, DOPO tethered Diels Alder clickable reactive silica nanoparticles for bismaleimide containing flame retardant thiol-ene nanocomposite coatings, Polymer 131 (2017) 132-142 [40] O.M. Ilinitch, V.B. Fenelonov, A.A. Lapkin, L.G. Okkel, V.V. Terskikh, K.I. Zamaraev, Intrinsic microporosity and gas transport in polyphenylene oxide polymers, Microporous Mesoporous Mater. 31 (1-2) (1999) 97-110 [41] P.M. Budd, A. Butler, J. Selbie, K. Mahmood, N.B. McKeown, B. Ghanem, K. Msayib, D. Book, A. Walton, The potential of organic polymer-based hydrogen storage materials, Phys. Chem. Chem. Phys. 9 (15) (2007) 1802-1808 [42] Y. Xu, J. Luo, X.Y. Liu, R. Liu, Polyurethane modified epoxy acrylate resins containing ε-caprolactone unit, Prog. Org. Coat.141 (2020) 105543 [43] J.P. Dhanalakshmi, M.A. Raj, C.T. Vijayakumar, Thermal degradation kinetics of structurally diverse poly(bispropargyl ethers-bismaleimide) blends, Chin. J. Polym. Sci. 34 (3) (2016) 253-267 [44] M.H. Armbruster, J.B. Austin, The adsorption of gases on planesurfaces of mica, J. Am. Chem. Soc. 60 (2) (1938) 467-475 [45] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156 (1) (2010) 2-10 [46] Z. Wang, H.M.Tang, W.Y. Li, J.W. Li, R.Y. Xu, K.N. Zhang, G.J. He, P.R. Shearing, D.J.L. Brett, Core-shell TiO2@C ultralong nanotubes with enhanced adsorption of antibiotics, J. Mater. Chem. A 7(32) (2019) 19081-19086 [47] L. Meng, X. Gui, Z. Yun, Static and dynamic studies of adsorption by four macroporous resins to enrich oridonin from Rabdosia rubescens, Chin. J. Chem. Eng. 32 (2021) 151-158 [48] Z. Wang, G.J.Wang, W.Y. Li, Z. Cui, J.H. Wu, I. Akpinar, L. Yu, G.J. He, J.Q. Hu, Loofah activated carbon with hierarchical structures for high-efficiency adsorption of multi-level antibiotic pollutants, Appl. Surf. Sci. 550 (2021) 149313 [49] J.Y.Zheng, B.Y. Pan, J.X. Xiao, X.D. He, Z. Chen, Q.L.Huang, X.Q.Lin, Experimental and mathematical simulation of noncompetitive and competitive adsorptiondynamic of formic acid-levulinic acid-5-hydroxymethylfurfural from single, binary, andternary systems in a fixed-bed column of SY-01 resin, Ind. Eng. Chem. Res. 57 (25) (2018) 8518-8528 [50] R. Khosravi, G. Moussavi, M.T. Ghaneian, M.H. Ehrampoush, B. Barikbin, A.A. Ebrahimi, G. Sharifzadeh, Chromium adsorption from aqueous solution using novel green nanocomposite:Adsorbent characterization, isotherm, kinetic and thermodynamic investigation, J. Mol. Liq. 256 (2018) 163-174 [51] X.Q. Zhou, J.S. Fan, N. Li, W.B. Qian, X.Q. Lin, J.L. Wu, J. Xiong, J.X. Bai, H.J. Ying, Adsorption thermodynamics and kinetics of uridine 5 '-monophosphate on a gel-typeanion exchange resin, Ind. Eng. Chem. Res. 50 (15) (2011) 9270-9279 [52] Y. Yu, Y.Y. Zhuang, Z.H. Wang, M.Q. Qiu, Adsorption of water-soluble dyes onto modified resin, Chemosphere 54 (3) (2004) 425-430 [53] P.D. Pathak, S.A. Mandavgane, Preparation and characterization of raw and carbon from banana peel by microwave activation:Application in citric acid adsorption, J. Environ. Chem. Eng. 3 (4) (2015) 2435-2447 [54] O. Pezoti, A.L. Cazetta, K.C. Bedin, L.S. Souza, A.C. Martins, T.L. Silva, O.O. SantosJr, J.V. Visentainer, V.C. Almeida, NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal:Kinetic, isotherm and thermodynamic studies, Chem. Eng. J. 288 (2016) 778-788 [55] T.S. Anirudhan, P.G. Radhakrishnan, Kinetics, thermodynamics and surface heterogeneity assessment of uranium(VI) adsorption onto cation exchange resin derived from a lignocellulosic residue, Appl. Surf. Sci. 255 (9) (2009) 4983-4991 [56] X.J. Hu, Y.S. Li, Y. Wang, X.X. Li, H.Y. Li, X. Liu, P. Zhang, Adsorption kinetics, thermodynamics and isotherm of thiacalix[4]arene-loaded resin to heavy metal ions, Desalination 259 (1-3) (2010) 76-83 [57] Y.Y. Chen, D.J. Zhang, Adsorption kinetics, isotherm and thermodynamics studies of flavones from Vaccinium Bracteatum Thunb leaves on NKA-2 resin, Chem. Eng. J. 254 (2014) 579-585 [58] X.Q. Lin, Q.L.Huang, G.X. Qi, L. Xiong, C. Huang, X.F. Chen, H.L.Li, X.D. Chen, Adsorption behavior of levulinic acid onto microporous hyper-cross-linked polymers in aqueous solution:Equilibrium, thermodynamic, kinetic simulation and fixed-bed column studies, Chemosphere 171 (2017) 231-239 [59] D.K. Mahmoud, M.A.M. Salleh, W.A. Karim, A. Idris, Z.Z. Abidin, Batch adsorption of basic dye using acid treated kenaf fibre char:Equilibrium, kinetic and thermodynamic studies, Chem. Eng. J.181-182(2012) 449-457 [60] S. Lagergren, Zur Theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar 24 (1898) 1-39 [61] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process. Biochem. 34 (5) (1999) 451-465 [62] S.R. Cao, T.T. Tang, C.X.Xi, Z.Q. Chen, Fabricating magnetic GO/ZIF-8 nanocomposite for amphetamine adsorption from water:Capability and mechanism, Chem. Eng. J. 422 (2021) 130096 |