[1] Yu, Two-Stage Hydrogenation Modification of C9 Petroleum Resin over NiWS/γ-Al2O3 and PdRu/γ-Al2O3 Catalysts in Series, China Pet. Process. Petrochem. T., 422 (2012) 83-89 [2] T. Li, Production and application of C5 petroleum resin, Adv. Fine Fetrochemicals (2004) 5(3)39-43 [3] Z.Y. Chai, Progress in hydrogenation technology for C9 petroleum resin, China Synth. Resin Plast. (2009) 26(6)71-74 [4] H.M. Xu, Production technology and development current situation of hydrogenated petroleum resin, China Adhesives 23 (4) (2014) 47-51 [5] Z.Y. Guan, F. Feng, J. Xu, Y.X. Zhu, X.N. Li, Pd/Al2O3 catalyst for hydrogenation modification of C5 petroleum resin and its deactivation reason, China Adhesives 23 (10) (2014) 13-17 [6] N. Sae-Ma, P. Praserthdam, J. Panpranot, S. Chaemchuen, S. Dokjamp, K. Suriye, G.L. Rempel, Color improvment of C9 hydrocarbon resin by hydrogenation over 2% Pd/γ-alumina catalyst:Effect of degree of aromatic rings hydrogenation, J. Appl. Polym. Sci. 117 (2010):2862-2869 [7] H. Konnerth, J.G. Zhang, D. Ma, M.H.G. Prechtl, N. Yan, Base promoted hydrogenolysis of lignin model compounds and organosolv lignin over metal catalysts in water, Chem. Eng. Sci. 123 (2015) 155-163 [8] E. Kordouli, B. Pawelec, K. Bourikas, C. Kordulis, J.L.G. Fierro, A. Lycourghiotis, Mo promoted Ni-Al2O3 co-precipitated catalysts for green diesel production, Appl. Catal. B:Environ. 229 (2018) 139-154 [9] T.T. Huang, Q.Y. Peng, W.J. Shi, J.D. Xu, Y. Fan, An anionic surfactant-assisted equilibrium adsorption method to prepare highly dispersed Fe-promoted Ni/Al2O3 catalysts for highly selective mercaptan removal, Appl. Catal. B:Environ. 230 (2018) 154-164 [10] J.G. Zhang, J. Teo, X. Chen, H. Asakura, T. Tanaka, K. Teramura, N. Yan, A series of NiM (M=ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water, ACS Catal. 4 (5) (2014) 1574-1583 [11] D. Chen, L.L. Wang, X.P. Chen, X.J. Wei, J.Z. Liang, J. Jiang, B.F. Liang, A Ni-based catalyst with polyvinyl pyrrolidone as a dispersant supported in a pretreated fluid catalytic cracking catalyst residue for C9 petroleum resin (C9 PR) hydrogenation, R Soc Open Sci 5 (5) (2018) 172052 [12] Y. Ding, X. Chen, L. Wang, X. Wei, J. Xue, Catalytic Activity of the Spent FCC Catalyst Modified by Chelation and Supported by Ni in Hydrogenation C9 Petroleum Resin, Acta Petrolei Sinica, 33 (2017) [13] W.C. Tang, X.J. Wei, X.H. Liu, M. Li, Y.L. Wang, L.C. Zhou, Application of spent fluid catalytic cracking catalyst modified by different auxiliary in the catalytic hydrogenation of C9 petroleum resin, J. Guangxi Uni., 41 (2016) 1634-1644 [14] C. Wei, X. Chen, J. Xue, X. Wei, J. Liang, R. Liang, L. Wang, A small eggshell Ni/SFC3R catalyst for C5 petroleum resin hydrogenation:Preparation and characterization, RSC Adv., 6 (2016) 49113-49122 [15] [[15]] M. Jiang, X.J. Wei, X.P. Chen, L.L. Wang, J.Z. Liang, C9 petroleum resin hydrogenation over a PEG1000-modified nickel catalyst supported on a recyclable fluid catalytic cracking catalyst residue, ACS Omega 5 (32) (2020) 20291-20298 [16] [[16]] C.H. Wu, X.P. Chen, L.Q. Tang, Q.L. Wei, X.J. Wei, J.Z. Liang, L.L. Wang, Rationally constructing A nano MOF-derived Ni and CQD embedded N-doped carbon nanosphere for the hydrogenation of petroleum resin at low temperature, ACS Appl. Mater. Interfaces 13 (9) (2021) 10855-10869 [17] [[17]] J.T. Feng, Y.J. Lin, D.G. Evans, X. Duan, D.Q. Li, Enhanced metal dispersion and hydrodechlorination properties of a Ni/Al2O3 catalyst derived from layered double hydroxides, J. Catal. 266 (2) (2009) 351-358 [18] [[18]] C. Rudolf, B. Dragoi, A. Ungureanu, A. Chirieac, S. Royer, A. Nastro, E. Dumitriu, NiAl and CoAl materials derived from takovite-like LDHs and related structures as efficient chemoselective hydrogenation catalysts, Catal. Sci. Technol. 4 (1) (2014) 179-189 [19] [[19]] A.S. Al-Fatesh, M.A. Naeem, A.H. Fakeeha, A.E. Abasaeed, Role of La2O3 as promoter and support in Ni/γ-Al2O3 catalysts for dry reforming of methane, Chin. J. Chem. Eng. 22 (1) (2014) 28-37 [20] [[20]] Z.X. Bai, X. Chen, K.X. Yang, W.X. Guan, C. Li, P. Chen, C.H. Liang, Hydrogenation of dicyclopentadiene resin and its monomer over high efficient CuNi alloy catalysts, ChemistrySelect 4 (20) (2019) 6035-6042 [21] [[21]] L.x. Ren zhengcao, Xu fan, Effect of Promoter on Sulfur Resistance of Ni/Al203 Catalyst During Hydrogenation Process of Petroleum Resin, Contemp. Chem. Ind., 39 (2010) 321-323 [22] [[22]] G. Kresse, J. Furthmüller, Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (16) (1996) 11169 [23] [[23]] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys Rev Lett 77 (18) (1996) 3865-3868 [24] [[24]] P.E. Blöchl, Projector augmented-wave method, Phys Rev B Condens Matter 50 (24) (1994) 17953-17979 [25] [[25]] Y.N. Liu, J.Y. Zhao, J.T. Feng, Y.F. He, Y.Y. Du, D.Q. Li, Layered double hydroxide-derived Ni-Cu nanoalloy catalysts for semi-hydrogenation of alkynes:Improvement of selectivity and anti-coking ability via alloying of Ni and Cu, J. Catal. 359 (2018) 251-260 [26] [[26]] H.R. Liu, D. Wierzbicki, R. Debek, M. Motak, T. Grzybek, P. Da Costa, M.E. Gálvez, La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures, Fuel 182 (2016) 8-16 [27] [[27]] X.P. Yu, N. Wang, W. Chu, M. Liu, Carbon dioxide reforming of methane for syngas production over La-promoted NiMgAl catalysts derived from hydrotalcites, Chem. Eng. J. 209 (2012) 623-632 [28] [[28]] M.K. Montañez, R. Molina, S. Moreno, Nickel catalysts obtained from hydrotalcites by coprecipitation and urea hydrolysis for hydrogen production, Int. J. Hydrog. Energy 39 (16) (2014) 8225-8237 [29] [[29]] W.H. Fang, S. Paul, M. Capron, F. Dumeignil, L. Jalowiecki-Duhamel, Hydrogen production from bioethanol catalyzed by NixXMg2AlOy ex-hydrotalcite catalysts, Appl. Catal. B:Environ. 152-153 (2014) 370-382 [30] [[30]] J.M. Rynkowski, T. Paryjczak, M. Lenik, On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts, Appl. Catal. A:Gen. 106 (1) (1993) 73-82 [31] [[31]] R. Dębek, M. Radlik, M. Motak, M.E. Galvez, W. Turek, P. Da Costa, T. Grzybek, Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature-On the effect of basicity, Catal. Today 257 (2015) 59-65 [32] [[32]] O.D. Pavel, D. Tichit, I.C. Marcu, Acido-basic and catalytic properties of transition-metal containing Mg-Al hydrotalcites and their corresponding mixed oxides, Appl. Clay Sci. 61 (2012) 52-58 [33] [[33]] V. Rives, Characterisation of layered double hydroxides and their decomposition products, Mater. Chem. Phys. 75 (1-3) (2002) 19-25 [34] [[34]] J.I. di Cosimo, V.K. Dıez, M. Xu, E. Iglesia, C.R. Apesteguıa, Structure and surface and catalytic properties of Mg-Al basic oxides, J. Catal. 178 (2) (1998) 499-510 [35] [[35]] P. Liu, M. Derchi, E.J.M. Hensen, Promotional effect of transition metal doping on the basicity and activity of calcined hydrotalcite catalysts for glycerol carbonate synthesis, Appl. Catal. B:Environ. 144 (2014) 135-143 [36] [[36]] G. Kishan, L. Coulier, V.H.J. de Beer, J.A.R. van Veen, J.W. Niemantsverdriet, Sulfidation and thiophene hydrodesulfurization activity of nickel tungsten sulfide model catalysts, prepared without and with chelating agents, J. Catal. 196 (1) (2000) 180-189 [37] C.Q. Wei, L.L. Wang, X.P. Chen, X.L. Pan, S.U. Lin-Lin, Y. Wang, Micro-size Eggshell-type Ni/SFC3R Catalyst for C5 Petroleum Resin Hydrogenation Reaction, Fine Chemicals, 33 (2016) 1061-1068 [38] [[38]] L.B. Peng Gaocong, Xiang Shaoji,Xie Guohuang, Study on Light Color C9 Petroleum Resin:III Nuclear Magnetic Resonance and Infrared Spectroscopy, Coat. Ind., 1 (1998) 39-42 |