[1] A.C. Hoffmann, R. de Jonge, H. Arends, C. Hanrats, Evidence of the ‘natural vortex length’ and its effect on the separation efficiency of gas cyclones, Filtr. Sep. 32 (8) (1995) 799-804 [2] K.S. Lim, H.S. Kim, K.W. Lee, Comparative performances of conventional cyclones and a double cyclone with and without an electric field, J. Aerosol Sci. 35 (1) (2004) 103-116 [3] F. Qian, M. Zhang, Study of the natural vortex length of a cyclone with response surface methodology, Comput. Chem. Eng. 29 (10) (2005) 2155-2162 [4] A. Avci, I. Karagoz, A. Surmen, Development of a new method for evaluating vortex length in reversed flow cyclone separators, Powder Technol. 235 (2013) 460-466 [5] I. Karagoz, A. Avci, A. Surmen, O. Sendogan, Design and performance evaluation of a new cyclone separator, J. Aerosol Sci. 59 (2013) 57-64 [6] H. Safikhani, P. Mehrabian, Numerical study of flow field in new cyclone separators, Adv. Powder Technol. 27 (2) (2016) 379-387 [7] A.J. Hoekstra, J.J. Derksen, H.E.A. van den Akker, An experimental and numerical study of turbulent swirling flow in gas cyclones, Chem. Eng. Sci. 54 (13-14) (1999) 2055-2065 [8] P.A. Yazdabadi, A.J. Griffiths, N. Syred, Characterization of the PVC phenomena in the exhaust of a cyclone dust separator, Exp. Fluids 17 (1) (1994) 84-95 [9] J.S. Müller, F. Lückoff, P. Paredes, V. Theofilis, K. Oberleithner, Receptivity of the turbulent precessing vortex core:synchronization experiments and global adjoint linear stability analysis, J. Fluid Mech. 888 (2020) A3 [10] Z.L. Liu, J.Y. Jiao, Y. Zheng, Q.K. Zhang, L.F. Jia, Investigation of turbulence characteristics in a gas cyclone by stereoscopic PIV, AIChE J. 52 (12) (2006) 4150-4160 [11] A. Griffiths, P. Yazdabadi, N. Syred, Alternate eddy shedding set up by the nonaxisymmetric recirculation zone at the exhaust of a cyclone dust separator, J. Fluids Eng. 120 (1) (1998) 193-199 [12] N. Syred, A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems, Prog. Energy Combust. Sci. 32 (2) (2006) 93-161 [13] P. Wang, X.S. Bai, M. Wessman, J. Klingmann, Large eddy simulation and experimental studies of a confined turbulent swirling flow, Phys. Fluids 16 (9) (2004) 3306-3324 [14] J.J. Derksen, H.E.A. Van den Akker, Simulation of vortex core precession in a reverse-flow cyclone, AIChE J. 46 (7) (2000) 1317-1331 [15] W. Peng, A.C. Hoffmann, H.W.A. Dries, M.A. Regelink, L.E. Stein, Experimental study of the vortex end in centrifugal separators:The nature of the vortex end, Chem. Eng. Sci. 60 (24) (2005) 6919-6928 [16] P. Zhang, G. Chen, J. Duan, W. Wang, Experimental evaluation of separation performance of fine particles of circulatory circumfluent cyclone separator system, Sep. Purif. Technol. 210 (2019) 231-235 [17] W.W. Wang, P. Zhang, L.X. Wang, G.H. Chen, J.L. Li, X.G. Li, Structure and performance of the circumfluent cyclone, Powder Technol. 200 (3) (2010) 158-163 [18] J.H. Duan, S. Gao, C.G. Hou, W.W. Wang, P. Zhang, C.J. Li, Effect of cylinder vortex stabilizer on separator performance of the Stairmand cyclone, Powder Technol. 372 (2020) 305-316 [19] J.H. Duan, S. Gao, Y.C. Lu, W.W. Wang, P. Zhang, C.J. Li, Study and optimization of flow field in a novel cyclone separator with inner cylinder, Adv. Powder Technol. 31 (10) (2020) 4166-4179 [20] I.V. Litvinov, A.V. Nazarov, S.I. Shtork, Suppression of vortex core precession in a swirling reacting flow, Thermophys. Aeromech. 23 (2) (2016) 305-308 [21] M. Vanierschot, G. Ogus, Experimental investigation of the precessing vortex core in annular swirling jet flows in the transitional regime, Exp. Therm Fluid Sci. 106 (2019) 148-158 [22] A. Hoekstra,Gas flow field and collection efficiency of cyclone separators, Ph. D. Thesis, Tudelft university, Netherlands, 2000 [23] R.C. Chanaud, Observations of oscillatory motion in certain swirling flows, J. Fluid Mech. 21 (1) (2006) 111-127 [24] T.A. Grimble, A. Agarwal, Characterisation of acoustically linked oscillations in cyclone separators, J. Fluid Mech. 780 (2015) 45-59 [25] Z.W. Gao, J. Wang, J.Y. Wang, Y. Mao, Y.D. Wei, Analysis of the effect of vortex on the flow field of a cylindrical cyclone separator, Sep. Purif. Technol. 211 (2019) 438-447 [26] L.S. Brar, J.J. Derksen, Revealing the details of vortex core precession in cyclones by means of large-eddy simulation, Chem. Eng. Res. Des. 159 (2020) 339-352 [27] S.K. Shukla, P. Shukla, P. Ghosh, The effect of modeling of velocity fluctuations on prediction of collection efficiency of cyclone separators, Appl. Math. Model. 37 (8) (2013) 5774-5789 [28] J.J. Derksen, Separation performance predictions of a Stairmand high-efficiency cyclone, AIChE J. 49 (6) (2003) 1359-1371 [29] L.S. Brar, R.P. Sharma, K. Elsayed, The effect of the cyclone length on the performance of Stairmand high-efficiency cyclone, Powder Technol. 286 (2015) 668-677 [30] K. Elsayed, C. Lacor, The effect of cyclone inlet dimensions on the flow pattern and performance, Appl. Math. Model. 35 (4) (2011) 1952-1968 [31] C.M. Song, B.B. Pei, M.T. Jiang, B. Wang, D.L. Xu, Y.X. Chen, Numerical analysis of forces exerted on particles in cyclone separators, Powder Technol. 294 (2016) 437-448 [32] W.W. Xu, Q. Li, J.J. Wang, Y.H. Jin, Performance evaluation of a new cyclone separator-Part II. Simulation results, Sep. Purif. Technol. 160 (2016) 112-116 [33] B.B. Pei, L. Yang, K.J. Dong, Y.C. Jiang, X.S. Du, B. Wang, The effect of cross-shaped vortex finder on the performance of cyclone separator, Powder Technol. 313 (2017) 135-144 [34] T.A. Sedrez, R.K. Decker, M.K. da Silva, D. Noriler, H.F. Meier, Experiments and CFD-based erosion modeling for gas-solids flow in cyclones, Powder Technol. 311 (2017) 120-131 [35] M. Wasilewski, L.S. Brar, Optimization of the geometry of cyclone separators used in clinker burning process:A case study, Powder Technol. 313 (2017) 293-302 [36] P. Zhang, J.H. Duan, G.H. Chen, W.W. Wang, Numerical investigation on gas-solid flow in a circumfluent cyclone separator, Aerosol Air Qual. Res. 19 (5) (2019) 971-980 [37] L.S. Brar, K. Elsayed, Analysis and optimization of cyclone separators with eccentric vortex finders using large eddy simulation and artificial neural network, Sep. Purif. Technol. 207 (2018) 269-283 [38] D. Misiulia, A.G. Andersson, T.S. Lundstrom, Large eddy simulation investigation of an industrial cyclone separator fitted with a pressure recovery deswirler, Chem. Eng. Technol. 40 (4) (2017) 709-718 [39] H. Mikulcic, M. Vujanovic, M.S. Ashhab, N. Duic, Large eddy simulation of a two-phase reacting swirl flow inside a cement cyclone, Energy 75 (2014) 89-96 [40] F.J. de Souza, R. de Vasconcelos Salvo, D.A. de Moro Martins, Large Eddy Simulation of the gas-particle flow in cyclone separators, Sep. Purif. Technol. 94 (2012) 61-70 [41] G.I. Pisarev, A.C. Hoffmann, W.M. Peng, H.A. Dijkstra, Large Eddy Simulation of the vortex end in reverse-flow centrifugal separators, Appl. Math. Comput. 217 (11) (2011) 5016-5022 [42] L.S. Brar, K. Elsayed, Analysis and optimization of multi-inlet gas cyclones using large eddy simulation and artificial neural network, Powder Technol. 311 (2017) 465-483 [43] J.J. Derksen, H.E.A. van den Akker, S. Sundaresan, Two-way coupled large-eddy simulations of the gas-solid flow in cyclone separators, AIChE J. 54 (4) (2008) 872-885 [44] F. Greifzu, C. Kratzsch, T. Forgber, F. Lindner, R. Schwarze, Assessment of particle-tracking models for dispersed particle-laden flows implemented in OpenFOAM and ANSYS FLUENT, Eng. Appl. Comput. Fluid Mech. 10 (1) (2016) 30-43 [45] ANSYS FLUENT, User's and theory guide, ANSYS, Inc., Canonsburg, Pennsylvania, USA, 2014 [46] A.C. Hoffmannc, A. van Santen, R.W.K. Allen, R. Clift, Effects of geometry and solid loading on the performance of gas cyclones, Powder Technol. 70 (1) (1992) 83-91 [47] J.J. Derksen, S. Sundaresan, H.E.A. van den Akker, Simulation of mass-loading effects in gas-solid cyclone separators, Powder Technol. 163 (1-2) (2006) 59-68 [48] D. Schellander, S. Schneiderbauer, S. Pirker, Numerical study of dilute and dense poly-dispersed gas-solid two-phase flows using an Eulerian and Lagrangian hybrid model, Chem. Eng. Sci. 95 (2013) 107-118 [49] P. Kozoluhb, A. Klimanek, R.A. Bialecki, W.P. Adamczyk, Numerical simulation of a dense solid particle flow inside a cyclone separator using the hybrid Euler-Lagrange approach, Particuology 31 (2017) 170-180 [50] T.G. Chuah, J. Gimbun, T.S.Y. Choong, A CFD study of the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics, Powder Technol. 162 (2) (2006) 126-132 [51] X. Sun, J.Y. Yoon, Multi-objective optimization of a gas cyclone separator using genetic algorithm and computational fluid dynamics, Powder Technol. 325 (2018) 347-360 [52] R. Shastri, L.S. Brar, Numerical investigations of the flow-field inside cyclone separators with different cylinder-to-cone ratios using large-eddy simulation, Sep. Purif. Technol. 249 (2020) 117149 [53] B. Wang, D.L. Xu, K.W. Chu, A.B. Yu, Numerical study of gas-solid flow in a cyclone separator, Appl. Math. Model. 30 (11) (2006) 1326-1342 [54] T.A. Grimble, A. Agarwal, M.P. Juniper, Local linear stability analysis of cyclone separators, J. Fluid Mech. 816 (2017) 507-538 [55] G.J. Wan, G.G. Sun, X.H. Xue, M.X. Shi, Solids concentration simulation of different size particles in a cyclone separator, Powder Technol. 183 (1) (2008) 94-104 [56] E.I. Butikov, Precession and nutation of a gyroscope, Eur. J. Phys. 27 (2006) 1071-1081 [57] H. Tofighian, E. Amani, M. Saffar-Avval, A large eddy simulation study of cyclones:The effect of sub-models on efficiency and erosion prediction, Powder Technol. 360 (2020) 1237-1252 [58] D.G. Sloan, P.J. Smith, L.D. Smoot, Modeling of swirl in turbulent flow systems, Prog. Energy Combust. Sci. 12 (3) (1986) 163-250 [59] P. Yazdabadi, A.J. Griffiths, N. Syred, Investigations into the precessing vortex core phenomenon in cyclone dust separators, Proc. Inst. Mech. Eng. Part E:J. Process. Mech. Eng. 208 (2) (1994) 147-154 [60] C. Cortes, A. Gil, Modeling the gas and particle flow inside cyclone separators, Prog. Energy Combust. Sci. 33 (2007) 409-452 [61] G. Solero, A. Coghe, Experimental fluid dynamic characterization of a cyclone chamber, Exp. Therm Fluid Sci. 27 (1) (2002) 87-96 [62] Q. Wei, G.G. Sun, J.X. Yang, A model for prediction of maximum-efficiency inlet velocity in a gas-solid cyclone separator, Chem. Eng. Sci. 204 (2019) 287-297 [63] M. Azadi, M. Azadi, An analytical study of the effect of inlet velocity on the cyclone performance using mathematical models, Powder Technol. 217 (2012) 121-127 [64] A.N. Huang, K. Ito, T. Fukasawa, K. Fukui, H.P. Kuo, Effects of particle mass loading on the hydrodynamics and separation efficiency of a cyclone separator, J. Taiwan Inst. Chem. Eng. 90 (2018) 61-67 |