[1] IPCC-Intergovernmental Panel on Climate Change[2020-08-20], https://www.ipcc.ch.https://www.ipcc.ch. [2] Y. Wu, X.P. Chen, J.L. Ma, Y. Wu, D.Y. Liu, J.G. Mi, W.Y. Xie, System integration for coal-fired power plant with post combustion CO2 capture:comparative study for different solid dry sorbents, Fuel 280(2020) 118561. [3] Y. Wu, X. Chen, J. Ma, Y.e. Wu, D. Liu, W. Xie, System integration optimization for coal-fired power plant with CO2 capture by Na2CO3 dry sorbents, Energy 211(2020) 118554. [4] M. Sotenko, J. Fernández, G. Hu, V. Derevschikov, A. Lysikov, E. Parkhomchuk, V. Semeykina, A. Okunev, E.V. Rebrov, Performance of novel CaO-based sorbents in high temperature CO2 capture under RF heating, Chem. Eng. Process.:Process. Intensif. 122(2017) 487-492. [5] K. Lechat, J.M. Lemieux, J. Molson, G. Beaudoin, R. Hébert, Field evidence of CO2 sequestration by mineral carbonation in ultramafic milling wastes, Thetford Mines, Canada, Int. J. Greenh. Gas Control. 47(2016) 110-121. [6] Power-To-Gas-An overview, ScienceDirect Topics,[2021-01-13], https://www.sciencedirect.com/topics/engineering/power-to-gas. [7] O.V. Zalomaeva, A.M. Chibiryaev, K.A. Kovalenko, O.A. Kholdeeva, B.S. Balzhinimaev, V.P. Fedin, Cyclic carbonates synthesis from epoxides and CO2 over metal-organic framework Cr-MIL-101, J. Catal. 298(2013) 179-185. [8] Cambridge scientists create building materials from CO2 emissions, BIM+,[2021-01-13], https://www.bimplus.co.uk/technology/cambridge-scientistscreate-building-materials-c02/. [9] A. Gambhir, M. Tavoni, Direct air carbon capture and sequestration:How it works and how it could contribute to climate-change mitigation, One Earth 1(4) (2019) 405-409. [10] C. Drechsler, D.W. Agar, Intensified integrated direct air capture-power-togas process based on H2,O and CO2 from ambient air, Appl. Energy 273(2020) 115076. [11] A. Wade, Direct action:Carbon capture gears up for climate battle, The Engineer,[2021-01-15], https://www.theengineer.co.uk/carbon-captureclimate-battle/. [12] N. McQueen, P. Psarras, H. Pilorgé, S. Liguori, J.J. He, M.Y. Yuan, C.M. Woodall, K. Kian, L. Pierpoint, J. Jurewicz, J.M. Lucas, R. Jacobson, N. Deich, J. Wilcox, Cost analysis of direct air capture and sequestration coupled to low-carbon thermal energy in the United States, Environ. Sci. Technol. 54(12) (2020) 7542-7551. [13] Direct Air Capture-Analysis-IEA,[2021-01-13], https://www.iea.org/reports/direct-air-capture. [14] J.V. Veselovskaya, P.D. Parunin, O.V. Netskina, L.S. Kibis, A.I. Lysikov, A.G. Okunev, Catalytic methanation of carbon dioxide captured from ambient air, Energy 159(2018) 766-773. [15] C. Chen, M. Tavoni, Direct air capture of CO2 and climate stabilization:a model based assessment, Clim. Chang. 118(1) (2013) 59-72. [16] A. Goeppert, M. Czaun, G.K.S. Prakash, G.A. Olah, Air as the renewable carbon source of the future:An overview of CO2 capture from the atmosphere, Energy Environ. Sci. 5(7) (2012) 7833-7853. [17] K.S. Lackner, The thermodynamics of direct air capture of carbon dioxide, Energy 50(2013) 38-46. [18] E.S. Sanz-Pérez, C.R. Murdock, S.A. Didas, C.W. Jones, Direct capture of CO2 from ambient air, Chem. Rev. 116(19) (2016) 11840-11876. [19] M. Fasihi, O. Efimova, C. Breyer, Techno-economic assessment of CO2 direct air capture plants, J. Clean. Prod. 224(2019) 957-980. [20] S.C. Lee, B.Y. Choi, T.J. Lee, C.K. Ryu, Y.S. Ahn, J.C. Kim, CO2 absorption and regeneration of alkali metal-based solid sorbents, Catal. Today 111(3-4) (2006) 385-390. [21] J.V. Veselovskaya, V.S. Derevschikov, T.Y. Kardash, O.A. Stonkus, T.A. Trubitsina, A.G. Okunev, Direct CO2 capture from ambient air using K2CO3/Al2O3 composite sorbent, Int. J. Greenh. Gas Control. 17(2013) 332-340. [22] Y. Guo, C. Zhao, J. Sun, W. Li, P. Lu, Facile synthesis of silica aerogel supported K2CO3 sorbents with enhanced CO2 capture capacity for ultra-dilute flue gas treatment, Fuel 215(2018) 735-743. [23] V.S. Derevschikov, J.V. Veselovskaya, T.Y. Kardash, D.A. Trubitsyn, A.G. Okunev, Direct CO2 capture from ambient air using K2CO3/Y2O3 composite sorbent, Fuel 127(2014) 212-218. [24] R. Rodríguez-Mosqueda, E.A. Bramer, T. Roestenberg, G. Brem, Parametrical study on CO2 capture from ambient air using hydrated K2CO3 supported on an activated carbon honeycomb, Ind. Eng. Chem. Res. 57(10) (2018) 3628-3638. [25] C. Zhao, Y. Guo, C. Li, S. Lu, Removal of low concentration CO2 at ambient temperature using several potassium-based sorbents, Appl. Energy 124(2014) 241-247. [26] J.V. Veselovskaya, V.S. Derevschikov, T.Y. Kardash, A.G. Okunev, Direct CO2 capture from ambient air by K2CO3/alumina composite sorbent for synthesis of renewable methane, Renew. Bioresour. 3(2015) 1-7. [27] S.C. Lee, H.J. Chae, S.J. Lee, Y.H. Park, C.K. Ryu, C.K. Yi, J.C. Kim, Novel regenerable potassium-based dry sorbents for CO2 capture at low temperatures, J. Mol. Catal. B:Enzym. 56(2-3) (2009) 179-184. [28] S.C. Lee, Y.M. Kwon, S.Y. Jung, J.B. Lee, C.K. Ryu, J.C. Kim, Excellent thermal stability of potassium-based sorbent using ZrO2 for post combustion CO2 capture, Fuel 115(2014) 97-100. [29] J.V. Veselovskaya, V.S. Derevschikov, A.S. Shalygin, D.A. Yatsenko, K2CO3- containing composite sorbents based on a ZrO2 aerogel for reversible CO2 capture from ambient air, Micropor. Mesopor. Mater. 310(2021) 110624. [30] J.V. Veselovskaya, A.I. Lysikov, O.V. Netskina, D.V. Kuleshov, A.G. Okunev, K2CO3-Containing composite sorbents based on thermally modified alumina:Synthesis, properties, and potential application in a direct air capture/methanation process, Ind. Eng. Chem. Res. 59(2020) 7130-7139. [31] Q. Yu, D.W.F. Brilman, Design strategy for CO2 adsorption from ambient air using a supported amine based sorbent in a fixed bed reactor, Energy Proc. 114(2017) 6102-6114. [32] C. Breyer, M. Fasihi, A. Aghahosseini, Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity:A new type of energy system sector coupling, Mitig. Adapt. Strateg. Glob. Chang. 25(1) (2020) 43-65. [33] S. Bali, M.A. Sakwa-Novak, C.W. Jones, Potassium incorporated alumina based CO2 capture sorbents:Comparison with supported amine sorbents under ultra-dilute capture conditions, Colloids Surf. A Physicochem. Eng. Asp. 486(2015) 78-85. [34] Y.I. Aristov, Nanocomposite Sorbents for Multiple Applications, Jenny Stanford Publishing, Singapore, 2020. [35] L. Greenspan, Humidity fixed points of binary saturated aqueous solutions, J. Res. Natl. Bureau Stand. Sect. A:Phys. Chem. 81A (1) (1977) 89. [36] S. Emmanuel, B. Berkowitz, Effects of pore-size controlled solubility on reactive transport in heterogeneous rock, Geophys. Res. Lett. 34(6) (2007) L06404. [37] L.A. Rijniers, H.P. Huinink, L. Pel, K. Kopinga, Experimental evidence of crystallization pressure inside porous media, Phys. Rev. Lett. 94(7) (2005) 075503. [38] Z. ALOthman, A review:Fundamental aspects of silicate mesoporous materials, Materials 5(12) (2012) 2874-2902. [39] B.C. Lippens, J.H. de Boer, Studies on pore systems in catalysts. V. The t method, J. Catal. 4(1965) 319-323. [40] C.J.H Schutte, K Buijs, The infra-red spectra of K2CO3 and its hydrates, Spectrochim. Acta 17(9-10) (1961) 921-926. [41] S. Verma, S. Rani, S. Kumar, Tetragonal zirconia quantum dots in silica matrix prepared by a modified sol-gel protocol, Appl. Phys. A Mater. Sci. Process. 124(2018) 387. [42] Z. Qian, J.L. Shi, Characterization of pure and doped zirconia nanoparticles with infrared transmission spectroscopy, Nanostruct. Mater. 10(2) (1998) 235-244. [43] M. Kantschewa, E.V. Albano, G. Etrtl, H. Knözinger, Infrared and x-ray photoelectron spectroscopy study of K2CO3/γ-Al2O3, Appl. Catal. 8(1) (1983) 71-84. [44] J. Kondo, H. Abe, Y. Sakata, K.I. Maruya, K. Domen, T. Onishi, Infrared studies of adsorbed species of H2, CO and CO2 over ZrO2, J. Chem. Soc., Faraday Trans. 84(2) (1988) 511. [45] K.L. Andrew Chan, S.G. Kazarian, Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells, Chem. Soc. Rev. 45(7) (2016) 1850-1864. [46] D. Lizoňová, J. Mužík, M. Šoltys, J. Beránek, S.G. Kazarian, F. Štěpánek, Molecular-level insight into hot-melt loading and drug release from mesoporous silica carriers, Eur. J. Pharm. Biopharm. 130(2018) 327-335. [47] A.S. Shalygin, I.V. Kozhevnikov, S.G. Kazarian, O.N. Martyanov, Spectroscopic imaging of deposition of asphaltenes from crude oil under flow, J. Petroleum Sci. Eng. 181(2019) 106205. [48] A.A. Gabrienko, O.N. Martyanov, S.G. Kazarian, Behavior of asphaltenes in crude oil at high-pressure CO2 conditions:In situ attenuated total reflection- Fourier transform infrared spectroscopic imaging study, Energy Fuels 30(6) (2016) 4750-4757. [49] C. Brady, M.E. Davis, B.J. Xu, Integration of thermochemical water splitting with CO2 direct air capture, Proc. Natl. Acad. Sci. USA 116(50) (2019) 25001- 25007. |