[1] N.A. Roslan, S.Z. Abidin, A. Ideris, D.V.N. Vo, A review on glycerol reforming processes over Ni-based catalyst for hydrogen and syngas productions, Int. J. Hydrog. Energy 45 (36) (2020) 18466–18489 [2] B.V. Ayodele, Tuan Ab Rashid Bin Tuan Abdullah, M.A. Alsaffar, S.I. Mustapa, S.F. Salleh, Recent advances in renewable hydrogen production by thermo-catalytic conversion of biomass-derived glycerol: Overview of prospects and challenges, Int. J. Hydrog. Energy 45 (36) (2020) 18160–18185 [3] H.M. Khan, C.H. Ali, T. Iqbal, S. Yasin, M. Sulaiman, H. Mahmood, M. Raashid, M. Pasha, B.Z. Mu, Current scenario and potential of biodiesel production from waste cooking oil in Pakistan: an overview, Chin. J. Chem. Eng. 27 (10) (2019) 2238–2250 [4] S. Rezania, B. Oryani, J. Park, B. Hashemi, K.K. Yadav, E.E. Kwon, J. Hur, J. Cho, Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications, Energy Convers. Manag. 201 (2019) 112155 [5] J. Gupta, M. Agarwal, A.K. Dalai, An overview on the recent advancements of sustainable heterogeneous catalysts and prominent continuous reactor for biodiesel production, J. Ind. Eng. Chem. 88 (2020) 58–77 [6] Y.S. Wang, M.Q. Chen, Z.L. Yang, T. Liang, S.M. Liu, Z.S. Zhou, X.J. Li, Bimetallic Ni-M (M = Co, Cu and Zn) supported on attapulgite as catalysts for hydrogen production from glycerol steam reforming, Appl. Catal. A: Gen. 550 (2018) 214–227 [7] K. Gao, O.A. Sahraei, M.C. Iliuta, Development of residue coal fly ash supported nickel catalyst for H2 production via glycerol steam reforming, Appl. Catal. B: Environ. 291 (2021) 119958 [8] S.A.N.M. Rahim, C.S. Lee, F. Abnisa, M.K. Aroua, W.A.W. Daud, P. Cognet, Y. de Pérès, A review of recent developments on kinetics parameters for glycerol electrochemical conversion - A by-product of biodiesel, Sci. Total. Environ. 705 (2020) 135137 [9] S. Danov, A. Esipovich, A. Belousov, A. Rogozhin, Gas-phase dehydration of glycerol over commercial Pt/γ-Al2O3 catalysts, Chin. J. Chem. Eng. 23 (7) (2015) 1138–1146 [10] M. El Doukkali, A. Iriondo, I. Gandarias, Enhanced catalytic upgrading of glycerol into high value-added H2 and propanediols: Recent developments and future perspectives, Mol. Catal. 490 (2020) 110928 [11] J.M. Silva, M.A. Soria, L.M. Madeira, Challenges and strategies for optimization of glycerol steam reforming process, Renew. Sustain. Energy Rev. 42 (2015) 1187–1213 [12] B.L. Dou, Y.C. Song, C. Wang, H.S. Chen, Y.J. Xu, Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges, Renew. Sustain. Energy Rev. 30 (2014) 950–960 [13] H. Zhou, S.F. Liu, F.L. Jing, S.Z. Luo, J. Shen, Y.P. Pang, W. Chu, Synergetic Bimetallic NiCo/CNT Catalyst for Hydrogen Production by Glycerol Steam Reforming: Effects of Metal Species Distribution, Ind. Eng. Chem. Res. 59 (2020) 17259–17268 [14] M. Shokrollahi Yancheshmeh, O. Alizadeh Sahraei, M. Aissaoui, M.C. Iliuta, A novel synthesis of NiAl2O4 spinel from a Ni-Al mixed-metal alkoxide as a highly efficient catalyst for hydrogen production by glycerol steam reforming, Appl. Catal. B: Environ. 265 (2020) 118535 [15] F.L. Jing, S.F. Liu, R. Wang, X.Y. Li, Z. Yan, S.Z. Luo, W. Chu, Hydrogen production through glycerol steam reforming over the NiCexAl catalysts, Renew. Energy 158 (2020) 192–201 [16] M.Q. Chen, Z.S. Zhou, Y.S. Wang, T. Liang, X.J. Li, Z.L. Yang, M.G. Chen, J. Wang, Effects of attapulgite-supported transition metals catalysts on glycerol steam reforming for hydrogen production, Int. J. Hydrog. Energy 43 (45) (2018) 20451–20464 [17] K. Polychronopoulou, N.D. Charisiou, G.I. Siakavelas, A.A. AlKhoori, V. Sebastian, S.J. Hinder, M.A. Baker, M.A. Goula, Ce–Sm–xCu cost-efficient catalysts for H2 production through the glycerol steam reforming reaction, Sustain. Energy Fuels 3 (3) (2019) 673–691 [18] D. Li, X.Y. Li, J.L. Gong, Catalytic reforming of oxygenates: state of the art and future prospects, Chem Rev 116 (19) (2016) 11529–11653 [19] S.O. Omarov, D.A. Sladkovskiy, K.D. Martinson, M. Peurla, A. Aho, D.Y. Murzin, V.I. Popkov, Influence of the initial state of ZrO2 on genesis, activity and stability of Ni/ZrO2 catalysts for steam reforming of glycerol, Appl. Catal. A: Gen. 616 (2021) 118098 [20] F. Bossola, X.I. Pereira-Hernández, C. Evangelisti, Y. Wang, V. Dal Santo, Investigation of the promoting effect of Mn on a Pt/C catalyst for the steam and aqueous phase reforming of glycerol, J. Catal. 349 (2017) 75–83 [21] T. Montini, R. Singh, P. Das, B. Lorenzut, N. Bertero, P. Riello, A. Benedetti, G. Giambastiani, C. Bianchini, S. Zinoviev, S. Miertus, P. Fornasiero, Renewable H2 from glycerol steam reforming: effect of La2O3 and CeO2 addition to Pt/Al2O3 catalysts, ChemSusChem 3 (5) (2010) 619–628 [22] R. Sundari, P.D. Vaidya, Reaction kinetics of glycerol steam reforming using a Ru/Al2O3 catalyst, Energy Fuels 26 (7) (2012) 4195–4204 [23] A. Gallo, C. Pirovano, M. Marelli, R. Psaro, V. dal Santo, Hydrogen production by glycerol steam reforming with Ru-based catalysts: a study on Sn doping, Chem. Vap. Deposition 16 (10–12) (2010) 305–310 [24] S.Z. Liu, Z. Yan, Y.Y. Zhang, R. Wang, S.Z. Luo, F.L. Jing, W. Chu, Carbon nanotubes supported nickel as the highly efficient catalyst for hydrogen production through glycerol steam reforming, ACS Sustainable Chem. Eng. 6 (11) (2018) 14403–14413 [25] S. Ramesh, N.J. Venkatesha, Template free synthesis of Ni-perovskite: an efficient catalyst for hydrogen production by steam reforming of bioglycerol, ACS Sustainable Chem. Eng. 5 (2) (2017) 1339–1346 [26] R. Moreira, A. Moral, F. Bimbela, A. Portugal, A. Ferreira, J.L. Sanchez, L.M. Gandía, Syngas production via catalytic oxidative steam reforming of glycerol using a Co/Al coprecipitated catalyst and different bed fillers, Fuel Process. Technol. 189 (2019) 120–133 [27] A. Carrero, A.J. Vizcaíno, J.A. Calles, L. García-Moreno, Hydrogen production through glycerol steam reforming using Co catalysts supported on SBA-15 doped with Zr, Ce and La, J. Energy Chem. 26 (1) (2017) 42–48 [28] L.A. Calderón, A. Montoya, A. Soon, C. Stampfl, Non-dissociative adsorption of glycerol on the (111) surface of Ni and Pt-based metallic systems: Hints on reforming activity from d-band center, Mol. Catal. 474 (2019) 110412 [29] Y.M. Sun, D.F. Liang, Y.S. Wang, M.Q. Chen, J.X. Hu, G.W. Sun, J.J. Shi, M.G. Chen, J. Wang, Producing hydrogen from steam reforming of bio-oil derived oxygenated model compounds by utilizing Ce-modified Ni/attapulgite catalysts, Catal. Lett. (2021) 1–16 [30] Z.M. Zhang, Y.R. Wang, K. Sun, Y.W. Shao, L.J. Zhang, S. Zhang, X. Zhang, Q. Liu, Z.H. Chen, X. Hu, Steam reforming of acetic acid over Ni-Ba/Al2O3 catalysts: Impacts of Barium addition on coking behaviors and formation of reaction intermediates, J. Energy Chem. 43 (2020) 208–219 [31] Z.J. Yu, X. Hu, P. Jia, Z.M. Zhang, D.H. Dong, G.Z. Hu, S. Hu, Y. Wang, J. Xiang, Steam reforming of acetic acid over nickel-based catalysts: The intrinsic effects of nickel precursors on behaviors of nickel catalysts, Appl. Catal. B: Environ. 237 (2018) 538–553 [32] J.J. Li, X.L. Mei, L.J. Zhang, Z.J. Yu, Q. Liu, T. Wei, W.B. Wu, D.H. Dong, L.L. Xu, X. Hu, A comparative study of catalytic behaviors of Mn, Fe, Co, Ni, Cu and Zn-Based catalysts in steam reforming of methanol, acetic acid and acetone, Int. J. Hydrog. Energy 45 (6) (2020) 3815–3832 [33] T. Liang, Y.S. Wang, M.Q. Chen, Z.L. Yang, S.M. Liu, Z.S. Zhou, X.J. Li, Steam reforming of phenol-ethanol to produce hydrogen over bimetallic NiCu catalysts supported on sepiolite, Int. J. Hydrog. Energy 42 (47) (2017) 28233–28246 [34] S.R. Wang, F. Zhang, Q.J. Cai, X.B. Li, L.J. Zhu, Q. Wang, Z.Y. Luo, Catalytic steam reforming of bio-oil model compounds for hydrogen production over coal ash supported Ni catalyst, Int. J. Hydrog. Energy 39 (5) (2014) 2018–2025 [35] M.J. Wang, F. Zhang, S.R. Wang, Effect of La2O3 replacement on γ-Al2O3 supported nickel catalysts for acetic acid steam reforming, Int. J. Hydrog. Energy 42 (32) (2017) 20540–20548 [36] J.H. Chen, M.J. Wang, S.R. Wang, X.B. Li, Hydrogen production via steam reforming of acetic acid over biochar-supported nickel catalysts, Int. J. Hydrog. Energy 43 (39) (2018) 18160–18168 [37] A. Kumar, R. Prasad, Y.C. Sharma, Ethanol steam reforming study over ZSM-5 supported cobalt versus nickel catalyst for renewable hydrogen generation, Chin. J. Chem. Eng. 27 (3) (2019) 677–684 [38] C. Shen, W.Q. Zhou, H. Yu, L. Du, Ni nanoparticles supported on carbon as efficient catalysts for steam reforming of toluene (model tar), Chin. J. Chem. Eng. 26 (2) (2018) 322–329 [39] X.L. Li, Z.M. Zhang, L.J. Zhang, H.L. Fan, X.L. Li, Q. Liu, S. Wang, X. Hu, Investigation of coking behaviors of model compounds in bio-oil during steam reforming, Fuel 265 (2020) 116961 [40] A.D. Shejale, G.D. Yadav, Ni–Cu and Ni–Co supported on La–Mg based metal oxides prepared by coprecipitation and impregnation for superior hydrogen production via steam reforming of glycerol, Ind. Eng. Chem. Res. 57 (14) (2018) 4785–4797 [41] M. Saidi, P. Moradi, Conversion of biodiesel synthesis waste to hydrogen in membrane reactor: Theoretical study of glycerol steam reforming, Int. J. Hydrog. Energy 45 (15) (2020) 8715–8726 [42] G.W. Wu, S.R. Li, C.X. Zhang, T. Wang, J.L. Gong, Glycerol steam reforming over perovskite-derived nickel-based catalysts, Appl. Catal. B: Environ. 144 (2014) 277–285 [43] K. Kamonsuangkasem, S. Therdthianwong, A. Therdthianwong, N. Thammajak, Remarkable activity and stability of Ni catalyst supported on CeO2-Al2O3 via CeAlO3 perovskite towards glycerol steam reforming for hydrogen production, Appl. Catal. B: Environ. 218 (2017) 650–663 [44] S. Al-Salihi, R. Abrokwah, W. Dade, V. Deshmane, T. Hossain, D. Kuila, Renewable hydrogen from glycerol steam reforming using Co-Ni-MgO based SBA-15 nanocatalysts, Int. J. Hydrog. Energy 45 (28) (2020) 14183–14198 [45] J.P.D.S.Q. Menezes, R.L. Manfro, M.M.V.M. Souza, Hydrogen production from glycerol steam reforming over nickel catalysts supported on alumina and niobia: Deactivation process, effect of reaction conditions and kinetic modeling, Int. J. Hydrog. Energy 43 (32) (2018) 15064–15082 [46] M.Q. Chen, Y.S. Wang, Z.L. Yang, T. Liang, S.M. Liu, Z.S. Zhou, X.J. Li, Effect of Mg-modified mesoporous Ni/Attapulgite catalysts on catalytic performance and resistance to carbon deposition for ethanol steam reforming, Fuel 220 (2018) 32–46 [47] Y.S. Wang, M.Q. Chen, X.J. Li, Z.L. Yang, T. Liang, Z.S. Zhou, Y. Cao, Hydrogen production via steam reforming of ethylene glycol over Attapulgite supported nickel catalysts, Int. J. Hydrog. Energy 43 (45) (2018) 20438–20450 [48] K. Bizkarra, V.L. Barrio, L. Gartzia-Rivero, J. Ba?uelos, I. López-Arbeloa, J.F. Cambra, Hydrogen production from a model bio-oil/bio-glycerol mixture through steam reforming using Zeolite L supported catalysts, Int. J. Hydrog. Energy 44 (3) (2019) 1492–1504 [49] K.F.M. Elias, A.F. Lucrédio, E.M. Assaf, Effect of CaO addition on acid properties of Ni-Ca/Al2O3 catalysts applied to ethanol steam reforming, Int. J. Hydrog. Energy 38 (11) (2013) 4407–4417 [50] Y.W. Zheng, L. Tao, Y.B. Huang, C. Liu, Z. Wang, Z.F. Zheng, Improving aromatic hydrocarbon content from catalytic pyrolysis upgrading of biomass on a CaO/HZSM-5 dual-catalyst, J. Anal. Appl. Pyrolysis 140 (2019) 355–366 [51] A.Z. Xu, W.H. Zhou, X.D. Zhang, B.F. Zhao, L. Chen, L.Z. Sun, W.J. Ding, S.X. Yang, H.B. Guan, B. Bai, Gas production by catalytic pyrolysis of herb residues using Ni/CaO catalysts, J. Anal. Appl. Pyrolysis 130 (2018) 216–223 [52] H.Y. Sun, Q.L. Zhang, J.J. Wen, T. Tang, H.M. Wang, M. Liu, P. Ning, L. Deng, Y.Z. Shi, Insight into the role of CaO in coke-resistant over Ni-HMS catalysts for CO2 reforming of methane, Appl. Surf. Sci. 521 (2020) 146395 [53] A. Bao, K. Liew, J.L. Li, Fischer-Tropsch synthesis on CaO-promoted Co/Al2O3 catalysts, J. Mol. Catal. A: Chem. 304 (1–2) (2009) 47–51 [54] R.Z. Chu, W.X. Hou, X.L. Meng, T.T. Xu, Z.Y. Miao, G.G. Wu, L. Bai, Catalytic kinetics of dimethyl ether one-step synthesis over CeO2-CaO-Pd/HZSM-5 catalyst in sulfur-containing syngas process, Chin. J. Chem. Eng. 24 (12) (2016) 1735–1741 [55] D.A. Sun, Y.M. Du, Z.X. Wang, J.W. Zhang, Y. Li, J.Y. Li, L.G. Kou, C.Y. Li, J.W. Li, H. Feng, J. Lu, Effects of CaO addition on Ni/CeO2-ZrO2-Al2O3 coated monolith catalysts for steam reforming of N-decane, Int. J. Hydrog. Energy 45 (33) (2020) 16421–16431 [56] V. Vazquez Thyssen, E. Moreira Assaf, Ni/CaO-SiO2 catalysts for assessment in steam reforming reaction of acetol, Fuel 254 (2019) 115592 [57] J. Ashok, Y. Kathiraser, M.L. Ang, S. Kawi, Bi-functional hydrotalcite-derived NiO-CaO-Al2O3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions, Appl. Catal. B: Environ. 172-173 (2015) 116–128 [58] M. Broda, A.M. Kierzkowska, D. Baudouin, Q. Imtiaz, C. Copéret, C.R. Müller, Sorbent-enhanced methane reforming over a Ni–Ca-based, bifunctional catalyst sorbent, ACS Catal. 2 (8) (2012) 1635–1646 [59] P. Xu, Z.M. Zhou, C.J. Zhao, Z.M. Cheng, Catalytic performance of Ni/CaO-Ca5Al6O14 bifunctional catalyst extrudate in sorption-enhanced steam methane reforming, Catal. Today 259 (2016) 347–353 [60] B. Jiang, B.L. Dou, K.Q. Wang, C. Zhang, M.J. Li, H.S. Chen, Y.J. Xu, Sorption enhanced steam reforming of biodiesel by-product glycerol on Ni-CaO-MMT multifunctional catalysts, Chem. Eng. J. 313 (2017) 207–216 [61] M. Yang, J.H. Dai, L.J. Wang, Y. Li, Y. Song, First principles study of structural stability against the distribution of Mg and Al atoms and adsorption behaviors of heavy metals of attapulgite, Comput. Mater. Sci. 169 (2019) 109106 [62] F.L. Yang, J.S. Weng, J.J. Ding, Z.Y. Zhao, L.Z. Qin, F.F. Xia, Effective conversion of saccharides into hydroxymethylfurfural catalyzed by a natural clay, attapulgite, Renew. Energy 151 (2020) 829–836 [63] C. Cerdá-Moreno, A. Chica, S. Keller, C. Rautenberg, U. Bentrup, Ni-sepiolite and Ni-todorokite as efficient CO2 methanation catalysts: Mechanistic insight by operando DRIFTS, Appl. Catal. B: Environ. 264 (2020) 118546 [64] M.Q. Chen, X.J. Li, Y.S. Wang, C.S. Wang, T. Liang, H. Zhang, Z.L. Yang, Z.S. Zhou, J. Wang, Hydrogen generation by steam reforming of tar model compounds using lanthanum modified Ni/sepiolite catalysts, Energy Convers. Manag. 184 (2019) 315–326 [65] M.Q. Chen, C.S. Wang, Y.S. Wang, Z.Y. Tang, Z.L. Yang, H. Zhang, J. Wang, Hydrogen production from ethanol steam reforming: Effect of Ce content on catalytic performance of Co/Sepiolite catalyst, Fuel 247 (2019) 344–355 [66] K. Peng, J.W. Wang, H.J. Wang, X.Y. Li, P.F. Wan, H.Y. Zhang, L.Q. Bai, MoS2 nanosheets supported on carbon hybridized montmorillonite as an efficient heterogeneous catalyst in aqueous phase, Appl. Clay Sci. 183 (2019) 105346 [67] A. Phukan, S.J. Borah, P. Bordoloi, K. Sharma, B.J. Borah, P.P. Sarmah, D.K. Dutta, An efficient and robust heterogeneous mesoporous montmorillonite clay catalyst for the Biginelli type reactions, Adv. Powder Technol. 28 (6) (2017) 1585–1592 [68] Y.S. Wang, M.Q. Chen, T. Liang, Z.L. Yang, J. Yang, S.M. Liu, Hydrogen generation from catalytic steam reforming of acetic acid by Ni/attapulgite catalysts, Catalysts 6 (11) (2016) 172 [69] Y.S. Wang, M.Q. Chen, J. Yang, S.M. Liu, Z.L. Yang, J. Wang, T. Liang, Hydrogen production from steam reforming of acetic acid over Ni-Fe/palygorskite modified with cerium, BioResources 12 (3) (2017) 4830–4853. DOI:10.15376/biores.12.3.4830-4853 [70] Y.S. Wang, C.S. Wang, M.Q. Chen, Z.Y. Tang, Z.L. Yang, J.X. Hu, H. Zhang, Hydrogen production from steam reforming ethanol over Ni/attapulgite catalysts - Part I: Effect of nickel content, Fuel Process. Technol. 192 (2019) 227–238 [71] Y.F. Zhang, M. Park, H.Y. Kim, S.J. Park, Moderated surface defects of Ni particles encapsulated with NiO nanofibers as supercapacitor with high capacitance and energy density, J. Colloid Interface Sci. 500 (2017) 155–163 [72] G.K. Reddy, S. Quillin, P. Smirniotis, Influence of the synthesis method on the structure and CO2 adsorption properties of Ca/Zr sorbents, Energy Fuels 28 (5) (2014) 3292–3299 [73] S.M. Kim, Y.J. Lee, J.W. Bae, H.S. Potdar, K.W. Jun, Synthesis and characterization of a highly active alumina catalyst for methanol dehydration to dimethyl ether, Appl. Catal. A: Gen. 348 (1) (2008) 113–120 [74] K.N. Papageridis, N.D. Charisiou, S. Douvartzides, V. Sebastian, S.J. Hinder, M.A. Baker, A.A. AlKhoori, S.I. AlKhoori, K. Polychronopoulou, M.A. Goula, Continuous selective deoxygenation of palm oil for renewable diesel production over Ni catalysts supported on Al2O3 and La2O3–Al2O3, RSC Adv. 11 (15) (2021) 8569–8584 [75] R. Huang, C. Lim, M.G. Jang, J.Y. Hwang, J.W. Han, Exsolved metal-boosted active perovskite oxide catalyst for stable water gas shift reaction, J. Catal. 400 (2021) 148–159 [76] M.Q. Chen, D.F. Liang, Y.S. Wang, C.S. Wang, Z.Y. Tang, C. Li, J.X. Hu, W. Cheng, Z.L. Yang, H. Zhang, J. Wang, Hydrogen production by ethanol steam reforming over M-Ni/sepiolite (M = La, Mg or Ca) catalysts, Int. J. Hydrog. Energy 46 (42) (2021) 21796–21811 [77] Y.S. Wang, D.F. Liang, C.S. Wang, M.Q. Chen, Z.Y. Tang, J.X. Hu, Z.L. Yang, H. Zhang, J. Wang, S.M. Liu, Influence of calcination temperature of Ni/Attapulgite on hydrogen production by steam reforming ethanol, Renew. Energy 160 (2020) 597–611 [78] C. Montero, A. Ochoa, P. Casta?o, J. Bilbao, A.G. Gayubo, Monitoring Ni0 and coke evolution during the deactivation of a Ni/La2O3-αAl2O3 catalyst in ethanol steam reforming in a fluidized bed, J. Catal. 331 (2015) 181–192 [79] A. Ochoa, I. Barbarias, M. Artetxe, A.G. Gayubo, M. Olazar, J. Bilbao, P. Casta?o, Deactivation dynamics of a Ni supported catalyst during the steam reforming of volatiles from waste polyethylene pyrolysis, Appl. Catal. B: Environ. 209 (2017) 554–565 |