[1] V. Mendu, T. Shearin, J.E. Campbell, Jr., J. Stork, J. Jae, M. Crocker, G. Huber, S. DeBolt, Global bioenergy potential from high-lignin agricultural residue, Proc. Natl. Acad. Sci. USA. 109 (10) (2012) 4014–4019 [2] W.M. Budzianowski, K. Postawa, Total Chain Integration of sustainable biorefinery systems, Appl. Energy 184 (2016) 1432–1446 [3] D. Bbosa, M. Mba-Wright, R.C. Brown, More than ethanol: A techno-economic analysis of a corn stover-ethanol biorefinery integrated with a hydrothermal liquefaction process to convert lignin into biochemicals, Biofuel. Bioprod. Bioref. 12 (3) (2018) 497–509 [4] L. Shuai, M.T. Amiri, Y.M. Questell-Santiago, F. Héroguel, Y.D. Li, H. Kim, R. Meilan, C. Chapple, J. Ralph, J.S. Luterbacher, Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization, Science 354 (6310) (2016) 329–333 [5] C.Z. Li, X.C. Zhao, A.Q. Wang, G.W. Huber, T. Zhang, Catalytic transformation of lignin for the production of chemicals and fuels, Chem. Rev. 115 (21) (2015) 11559–11624 [6] J. Zakzeski, P.C.A. Bruijnincx, A.L. Jongerius, B.M. Weckhuysen, The catalytic valorization of lignin for the production of renewable chemicals, Chem. Rev. 110 (6) (2010) 3552–3599 [7] P. Azadi, O.R. Inderwildi, R. Farnood, D.A. King, Liquid fuels, hydrogen and chemicals from lignin: A critical review, Renew. Sustain. Energy Rev. 21 (2013) 506–523 [8] J.M. Ha, K.R. Hwang, Y.M. Kim, J. Jae, K.H. Kim, H.W. Lee, J.Y. Kim, Y.K. Park, Recent progress in the thermal and catalytic conversion of lignin, Renew. Sustain. Energy Rev. 111 (2019) 422–441 [9] H. Wang, H. Ruan, H. Pei, H. Wang, X. Chen, M.P. Tucker, J.R. Cort, B. Yang, Biomass-derived lignin to jet fuel range hydrocarbons via aqueous phase hydrodeoxygenation, Green Chem. 17 (2015) 5131–5135 [10] J. Hu, S.H. Zhang, R. Xiao, X.X. Jiang, Y.J. Wang, Y.H. Sun, P. Lu, Catalytic transfer hydrogenolysis of lignin into monophenols over platinum–rhenium supported on titanium dioxide using isopropanol as in situ hydrogen source, Bioresour. Technol. 279 (2019) 228–233 [11] L.P. Kong, L.L. Zhang, J.L. Gu, L. Gou, L.F. Xie, Y.Y. Wang, L.Y. Dai, Catalytic hydrotreatment of kraft lignin into aromatic alcohols over nickel–rhenium supported on niobium oxide catalyst, Bioresour. Technol. 299 (2020)122582 [12] H.W. Lee, Y.M. Kim, J. Jae, B.H. Sung, S.C. Jung, S.C. Kim, J.K. Jeon, Y.K. Park, Catalytic pyrolysis of lignin using a two-stage fixed bed reactor comprised of in-situ natural zeolite and ex-situ HZSM-5, J. Anal. Appl. Pyrolysis 122 (2016) 282–288 [13] N. Mahmood, Z. Yuan, J. Schmidt, C. Xu, Production of polyols via direct hydrolysis of kraft lignin: Effect of process parameters, Bioresour. Technol. 139 (2013) 13–20 [14] J.D.P. Araújo, C.A. Grande, A.E. Rodrigues, Vanillin production from lignin oxidation in a batch reactor, Chem. Eng. Res. Des. 88 (8) (2010) 1024–1032 [15] A. Rahimi, A. Ulbrich, J.J. Coon, S.S. Stahl, Formic-acid-induced depolymerization of oxidized lignin to aromatics, Nature 515 (7526) (2014) 249–252 [16] J.H. Dai, A.F. Patti, K. Saito, Recent developments in chemical degradation of lignin: Catalytic oxidation and ionic liquids, Tetrahedron Lett. 57 (45) (2016) 4945–4951 [17] M.P. Pandey, C.S. Kim, Lignin depolymerization and conversion: A review of thermochemical methods, Chem. Eng. Technol. 34 (1) (2011) 29–41 [18] J.G. Zhang, H. Asakura, J. van Rijn, J. Yang, P. Duchesne, B. Zhang, X. Chen, P. Zhang, M. Saeys, N. Yan, Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals, Green Chem. 16 (5) (2014) 2432–2437 [19] H. Konnerth, J.G. Zhang, D. Ma, M.H.G. Prechtl, N. Yan, Base promoted hydrogenolysis of lignin model compounds and organosolv lignin over metal catalysts in water, Chem. Eng. Sci. 123 (2015) 155–163 [20] M.O. Bengoechea, N. Miletíc, M.H. Vogt, P.L. Arias, T. Barth, Analysis of the effect of temperature and reaction time on yields, compositions and oil quality in catalytic and non-catalytic lignin solvolysis in a formic acid/water media using experimental design, Bioresour. Technol. 234 (2017) 86–98 [21] I. Kristianto, S.O. Limarta, H. Lee, J.M. Ha, D.J. Suh, J. Jae, Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media, Bioresour. Technol. 234 (2017) 424–431 [22] H.W. Guo, D.M. Miles–Barrett, B. Zhang, A.Q. Wang, T. Zhang, N.J. Westwood, C.Z. Li, Is oxidation–reduction a real robust strategy for lignin conversion? A comparative study on lignin and model compounds, Green Chem. 21 (4) (2019) 803–811 [23] W.Y. Xu, S.J. Miller, P.K. Agrawal, C.W. Jones, Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid, ChemSusChem 5 (4) (2012) 667–675 [24] S.M. Zhang, L. Su, L. Liu, G.Z. Fang, Degradation on hydrogenolysis of soda lignin using CuO/SO42–/ZrO2 as catalyst, Ind. Crop. Prod. 77 (2015) 451–457 [25] L.P. Kong, C.Z. Liu, J. Gao, Y.Y. Wang, L.Y. Dai, Efficient and controllable alcoholysis of Kraft lignin catalyzed by porous zeolite-supported nickel–copper catalyst, Bioresour. Technol. 276 (2019) 310–317 [26] D. Wang, G.C. Li, C.H. Zhang, Z. Wang, X.B. Li, Nickel nanoparticles inlaid in lignin-derived carbon as high effective catalyst for lignin depolymerization, Bioresour. Technol. 289 (2019)121629 [27] Y.D. Bi, X.J. Lei, G.H. Xu, H. Chen, J.L. Hu, Catalytic fast pyrolysis of kraft lignin over hierarchical HZSM-5 and Hβzeolites, Catalysts 8 (2) (2018)82 [28] W.X. Guan, X. Chen, S.H. Jin, C.H. Li, C.W. Tsang, C. Liang, Highly stable Nb2O5–Al2O3 composites supported Pt catalysts for hydrodeoxygenation of diphenyl ether, Ind. Eng. Chem. Res. 56 (47) (2017) 14034–14042 [29] Q. Lu, Z.B. Zhang, X.Q. Wang, C.Q. Dong, Y.Q. Liu, Catalytic upgrading of biomass fast pyrolysis vapors using ordered mesoporous ZrO2, TiO2 and SiO2, Energy Procedia 61 (2014) 1937–1941 [30] H.W. Guo, Z.J. Qi, Y.X. Liu, H.A. Xia, L. Li, Q.T. Huang, A.Q. Wang, C.Z. Li, Tungsten-based catalysts for lignin depolymerization: The role of tungsten species in C–O bond cleavage, Catal. Sci. Technol. 9 (9) (2019) 2144–2151 [31] W.Y. Wang, K. Wu, P.L. Liu, L. Li, Y.Q. Yang, Y. Wang, Hydrodeoxygenation of p-cesol over Pt/Al2O3 catalyst promoted by ZrO2, CeO2, and CeO2–ZrO2, Ind. Eng. Chem. Res. 55 (28) (2016) 7598–7603 [32] Y.K. Hong, D.W. Lee, H.J. Eom, K.Y. Lee, The catalytic activity of Pd/WOx/γ-Al2O3 for hydrodeoxygenation of guaiacol, Appl. Catal. B: Environ. 150–151 (2014) 438–445 [33] A. Ramesh, P. Tamizhdurai, V.L. Mangesh, K. Palanichamy, S. Gopinath, K. Sureshkumar, K. Shanthi, Mg/SiO2–Al2O3 supported nickel catalysts for the production of naphthenic hydrocarbon fuel by hydro-de-oxygenation of eugenol, Int. J. Hydrog. Energy 44 (47) (2019) 25607–25620 [34] D.P. Phan, T.K. Vo, V.N. Le, J. Kim, E.Y. Lee, Spray pyrolysis synthesis of bimetallic NiMo/Al2O3–TiO2 catalyst for hydrodeoxygenation of guaiacol: Effects of bimetallic composition and reduction temperature, J. Ind. Eng. Chem. 83 (2020) 351–358 [35] A. Bjeli?, B. Likozar, M. Grilc, Scaling of lignin monomer hydrogenation, hydrodeoxygenation and hydrocracking reaction micro-kinetics over solid metal/acid catalysts to aromatic oligomers, Chem. Eng. J. 399 (2020) 125712 [36] D. Singh, P.L. Dhepe, Understanding the influence of alumina supported ruthenium catalysts synthesis and reaction parameters on the hydrodeoxygenation of lignin derived monomers, Mol. Catal. 480 (2020) 110525 [37] Z. Wu, X.X. Zhao, J. Zhang, X. Li, Y. Zhang, F. Wang, Ethanol/1,4-dioxane/formic acid as synergistic solvents for the conversion of lignin into high-value added phenolic monomers, Bioresour. Technol. 278 (2019) 187–194 [38] W.Z. Li, X.M. Dou, C.F. Zhu, J.D. Wang, H.M. Chang, H. Jameel, X.S. Li, Production of liquefied fuel from depolymerization of kraft lignin over a novel modified nickel/H-beta catalyst, Bioresour. Technol. 269 (2018) 346–354 [39] M.A. Ebiad, D.R. Abd El–Hafiz, R.A. Elsalamony, L.S. Mohamed, Ni supported high surface area CeO2–ZrO2 catalysts for hydrogen production from ethanol steam reforming, RSC Adv. 2 (21) (2012) 8145–8156 [40] A. Bjeli?, M. Grilc, B. Likozar, Bifunctional metallic-acidic mechanisms of hydrodeoxygenation of eugenol as lignin model compound over supported Cu, Ni, Pd, Pt, Rh and Ru catalyst materials, Chem. Eng. J. 394 (2020) 124914 [41] N.A. Fathurrahman, C.S. Wibowo, M. Nasikin, M. Khalil, Optimization of sorbitan monooleate and γ-Al2O3 nanoparticles as cold-flow improver in B30 biodiesel blend using response surface methodology (RSM), J. Ind. Eng. Chem. 99 (2021) 271–281 [42] T.I. Bhuiyan, P. Arudra, M.N. Akhtar, A.M. Aitani, R.H. Abudawoud, M.A. Al-Yami, S.S. Al-Khattaf, Metathesis of 2-butene to propylene over W-mesoporous molecular sieves: A comparative study between tungsten containing MCM-41 and SBA-15, Appl. Catal. A: Gen. 467 (2013) 224–234 [43] I. Jiménez-Morales, J. Santamaría-González, P. Maireles-Torres, A. Jiménez-López, Zirconium doped MCM-41 supported WO3 solid acid catalysts for the esterification of oleic acid with methanol, Appl. Catal. A: Gen. 379 (1–2) (2010) 61–68 [44] C. Temvuttirojn, Y. Poo-Arporn, N. Chanlek, C.K. Cheng, C.C. Chong, J. Limtrakul, T. Witoon, Role of calcination temperatures of ZrO2 support on methanol synthesis from CO2 hydrogenation at high reaction temperatures over ZnOx/ZrO2 catalysts, Ind. Eng. Chem. Res. 59 (13) (2020) 5525–5535 [45] W.J. Li, P.M. Da, Y.Y. Zhang, Y.C. Wang, X. Lin, X.G. Gong, G.F. Zheng, WO3 nanoflakes for enhanced photoelectrochemical conversion, ACS Nano 8 (11) (2014) 11770–11777 [46] S. Totong, P. Daorattanachai, N. Laosiripojana, R. Idem, Catalytic depolymerization of alkaline lignin to value-added phenolic-based compounds over Ni/CeO2–ZrO2 catalyst synthesized with a one-step chemical reduction of Ni species using NaBH4 as the reducing agent, Fuel Process. Technol. 198 (2020)106248 [47] K. Barta, G.R. Warner, E.S. Beach, P.T. Anastas, Depolymerization of organosolv lignin to aromatic compounds over Cu-doped porous metal oxides, Green Chem. 16 (1) (2014) 191–196 [48] J.A. Onwudili, P.T. Williams, Catalytic depolymerization of alkali lignin in subcritical water: Influence of formic acid and Pd/C catalyst on the yields of liquid monomeric aromatic products, Green Chem. 16 (11) (2014) 4740–4748 [49] A. Kloekhorst, S. Yu, Y.E. Yao, F. Ma, H.J. Heeres, Catalytic hydrodeoxygenation and hydrocracking of Alcell? lignin in alcohol/formic acid mixtures using a Ru/C catalyst, Biomass Bioenergy 80 (2015) 147–161 [50] X.Y. Lu, X.J. Zhu, H.Q. Guo, H. Que, D.D. Wang, D.X. Liang, T. He, C.J. Hu, C.Z.Xu, X.L. Gu, Efficient depolymerization of alkaline lignin to phenolic compounds at low temperatures with formic acid over inexpensive Fe–Zn/Al2O3 catalyst, Energy Fuels 34 (6) (2020) 7121–7130 [51] S.O. Limarta, H. Kim, J.M. Ha, Y.K. Park, J. Jae, High-quality and phenolic monomer-rich bio-oil production from lignin in supercritical ethanol over synergistic Ru and Mg–Zr-oxide catalysts, Chem. Eng. J. 396 (2020) 125175 [52] J.L. Wen, B.L. Xue, F. Xu, R.C. Sun, A. Pinkert, Unmasking the structural features and property of lignin from bamboo, Ind. Crop. Prod. 42 (2013) 332–343 [53] A.K. Deepa, P.L. Dhepe, Lignin depolymerization into aromatic monomers over solid acid catalysts, ACS Catal. 5 (1) (2015) 365–379 |