中国化学工程学报 ›› 2022, Vol. 49 ›› Issue (9): 1-20.DOI: 10.1016/j.cjche.2022.04.027
• Special Column: Membranes for Life Science • 下一篇
Xiaoyue Yao, Yu Liu, Zhenyu Chu, Wanqin Jin
收稿日期:
2022-01-12
修回日期:
2022-04-15
出版日期:
2022-09-28
发布日期:
2022-10-19
通讯作者:
Zhenyu Chu,E-mail:zychu@njtech.edu.cn;Wanqin Jin,E-mail:wqjin@njtech.edu.cn
基金资助:
Xiaoyue Yao, Yu Liu, Zhenyu Chu, Wanqin Jin
Received:
2022-01-12
Revised:
2022-04-15
Online:
2022-09-28
Published:
2022-10-19
Contact:
Zhenyu Chu,E-mail:zychu@njtech.edu.cn;Wanqin Jin,E-mail:wqjin@njtech.edu.cn
Supported by:
摘要: Since the global outbreak of COVID-19, membrane technology for clinical treatments, including extracorporeal membrane oxygenation (ECMO) and protective masks and clothing, has attracted intense research attention for its irreplaceable abilities. Membrane research and applications are now playing an increasingly important role in various fields of life science. In addition to intrinsic properties such as size sieving, dissolution and diffusion, membranes are often endowed with additional functions as cell scaffolds, catalysts or sensors to satisfy the specific requirements of different clinical applications. In this review, we will introduce and discuss state-of-the-art membranes and their respective functions in four typical areas of life science: artificial organs, tissue engineering, in vitro blood diagnosis and medical support. Emphasis will be given to the description of certain specific functions required of membranes in each field to provide guidance for the selection and fabrication of the membrane material. The advantages and disadvantages of these membranes have been compared to indicate further development directions for different clinical applications. Finally, we propose challenges and outlooks for future development.
Xiaoyue Yao, Yu Liu, Zhenyu Chu, Wanqin Jin. Membranes for the life sciences and their future roles in medicine[J]. 中国化学工程学报, 2022, 49(9): 1-20.
Xiaoyue Yao, Yu Liu, Zhenyu Chu, Wanqin Jin. Membranes for the life sciences and their future roles in medicine[J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 1-20.
[1] M. Morrissey, Willem J Kolff (1911-2009):physician, inventor and pioneer:father of artificial organs, J Med Biogr 20 (3) (2012) 136-138 [2] C.X. Chen, H.X. Guo, P.Y. Qin, Membrane separation, Chemical Industry Press, Beijing, 2017,20-21. (in Chinese) [3] Big data analysis of global life science industry market status in 2021:China accounts for 8.3%, https://www.sohu.com/a/483845182_350221. [4] Y.F. Ji, M.C. Zhang, K.C. Guan, J. Zhao, G.P. Liu, W.Q. Jin, High-performance CO 2 capture through polymer-based ultrathin membranes, Adv. Funct. Mater. 29 (33) (2019) 1900735 [5] M.C. Zhang, K.C. Guan, Y.F. Ji, G.P. Liu, W.Q. Jin, N.P. Xu, Controllable ion transport by surface-charged graphene oxide membrane, Nat. Commun. 10 (2019) 1253 [6] M.C. Zhang, Y.Y. Mao, G.Z. Liu, G.P. Liu, Y.Q. Fan, W.Q. Jin, Molecular bridges stabilize graphene oxide membranes in water, Angew. Chem. Int. Ed. 59 (4) (2020) 1689-1695 [7] T. Pandey, S. Thomas, M.T. Heller, Current indications, techniques, and imaging findings of stem cell treatment and bone marrow transplant, Radiol. Clin. North Am. 54 (2) (2016) 375-396 [8] C.M. Lim, L. Gordon, Photodynamic therapy:a targeted literature review focussing on outcomes and optimisation in solid organ transplant recipients, Australas. J. Dermatol. 60 (4) (2019) 273-277 [9] T. Yamakawa, K. Ishigami, A. Takizawa, Y. Takada, S. Ohwada, Y. Yokoyama, T. Kazama, D. Hirayama, S. Yoshii, H.O. Yamano, R. Ohizumi, N. Bunya, T. Sugawara, M. Tsujiwaki, S. Sugita, S. Takahashi, E. Narimatsu, H. Nakase, Extensive mucosal sloughing of the small intestine and colon in a patient with severe COVID-19, DEN Open 2 (1) (2022):e42 [10] A. Park, Y.J. Song, E. Yi, B.T. Duy Nguyen, D. Han, E. Sohn, Y. Park, J. Jung, Y.M. Lee, Y.H. Cho, J.F. Kim, Blood oxygenation using fluoropolymer-based artificial lung membranes, ACS Biomater. Sci. Eng. 6 (11) (2020) 6424-6434 [11] Y.B. Wang, M. Gong, S. Yang, K. Nakashima, Y.K. Gong, Hemocompatibility and film stability improvement of crosslinkable MPC copolymer coated polypropylene hollow fiber membrane, J. Membr. Sci. 452 (2014) 29-36 [12] X. Huang, W.P. Wang, Z. Zheng, W.L. Fan, C. Mao, J.L. Shi, L. Li, Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators, Appl. Surf. Sci. 362 (2016) 355-363 [13] T.G. Brodie, The perfusion of surviving organs, J. Physiol. 29 (3) (1903) 266-275 [14] L.C. Clark Jr, F. Gollan, V.B. Gupta, The oxygenation of blood by gas dispersion, Science 111 (2874) (1950) 85-87 [15] W.H. Lee Jr, D. Krumhaar, E.W. Fonkalsrud, O.A. Schjeide, J.V. Maloney Jr, Denaturation of plasma proteins as a cause of morbidity and death after intracardiac operations, Surgery 50 (1961) 29-39 [16] J.H. Gibbon Jr, Application of a mechanical heart and lung apparatus to cardiac surgery, Minn. Med. 37 (3) (1954) 171-185;passim [17] N. Burns, Production of a silicone rubber film for the membrane lung, Biomed. Eng. 4 (8) (1969) 356-359 [18] M.L. Bramson, J.J. Osborn, F.B. Main, M.F. O'Brien, J.S. Wright, F. Gerbode, A new disposable membrane oxygenator with integral heat exchange, J. Thorac. Cardiovasc. Surg. 50 (1965) 391-400 [19] M. Fukuda, A. Tokumine, K. Noda, K. Sakai, Newly developed pediatric membrane oxygenator that suppresses excessive pressure drop in cardiopulmonary bypass and extracorporeal membrane oxygenation (ECMO), Membranes 10 (11) (2020) 362 [20] S.A. Kolesnikov, E.P. Stepanian, A.D. Ol'shanetskaia, Effect of artificial circulation under moderate hypothermia on blood coagulation and anticoagulation factors in patients with acquired cardiac defects, Grudn. Khir. 6 (6) (1964) 16-20 [21] E.P. Stepanian, E.P. Pospelova, T.K. Shurkalina, Control of the blood coagulation system in patients with acquired heart defects, operated on under conditions of hypothermia and using an artificial blood circulation apparatus, Probl. Gematol. Pereliv. Krovi 10 (8) (1965) 12-16 [22] M.E. Sinclair, G. Reber, A. Schweizer, K.L. Dorrington, P. de Moerloose, C.A. Bouvier, J.P. Gardaz, Anticoagulation by ancrod for carbon dioxide removal by extracorporeal membrane lung in the dog, J. Thorac. Cardiovasc. Surg. 97 (2) (1989) 275-281 [23] K.A. Burgess, H.H. Hu, W.R. Wagner, W.J. Federspiel, Towards microfabricated biohybrid artificial lung modules for chronic respiratory support, Biomed. Microdevices 11 (1) (2009) 117-127 [24] J.A. Awad, R. Cloutier, L. Fournier, D. Major, L. Martin, M. Masson, R. Guidoin, Pumpless respiratory assistance using a membrane oxygenator as an artificial placenta:a preliminary study in newborn and preterm lambs, J. Invest. Surg. 8 (1) (1995) 21-30 [25] D.N. Gray, Polymeric membranes for artificial lungs, ACSSymp.Ser. 256 (1984) 151-162 [26] F. Wiese, D. Paul, W. Possart, G. Malsch, E.Bossin, Interfacial energy of swollen polymer membranes, Acta Polym. 41 (2) 95-98 [27] A.D. Malkin, S.H. Ye, E.J. Lee, X.G. Yang, Y. Zhu, L.J. Gamble, W.J. Federspiel, W.R. Wagner, Development of zwitterionic sulfobetaine block copolymer conjugation strategies for reduced platelet deposition in respiratory assist devices, J. Biomed. Mater. Res. B Appl. Biomater. 106 (7) (2018) 2681-2692 [28] C. Hess, B. Wiegmann, A.N. Maurer, P. Fischer, L. Möller, U. Martin, A. Hilfiker, A. Haverich, S. Fischer, Reduced thrombocyte adhesion to endothelialized poly 4-methyl-1-pentene gas exchange membranes-A first step toward bioartificial lung development, Tissue Eng. A 16 (10) (2010) 3043-3053 [29] M. Pflaum, M. Kühn-Kauffeldt, S. Schmeckebier, D. Dipresa, K. Chauhan, B. Wiegmann, R.J. Haug, J. Schein, A. Haverich, S. Korossis, Endothelialization and characterization of titanium dioxide-coated gas-exchange membranes for application in the bioartificial lung, Acta Biomater. 50 (2017) 510-521 [30] J.L. Li, F. Liu, Y. Qin, J.D. He, Z. Xiong, G. Deng, Q. Li, A novel natural hirudin facilitated anti-clotting polylactide membrane via hydrogen bonding interaction, J. Membr. Sci. 523 (2017) 505-514 [31] B.T.D. Nguyen, H.Y.N. Thi, B.P.N. Thi, D.K. Kang, J.F. Kim, The roles of membrane technology in artificial organs:current challenges and perspectives, Membranes 11 (4) (2021) 239 [32] L.J. Zhu, F. Liu, X.M. Yu, A.L. Gao, L.X. Xue, Surface zwitterionization of hemocompatible poly(lactic acid) membranes for hemodiafiltration, J. Membr. Sci. 475 (2015) 469-479 [33] G. Bello, F. di Muzio, R. Maviglia, M. Antonelli, New membranes for extracorporeal blood purification in septic conditions, Minerva Anestesiol. 78 (11) (2012) 1265-1281 [34] B. Ji, C.V. Rensburg, J.A. Tsai,, Disputed issues in renal failure therapy. Proceedings of the dialysis workshop, Bernried, March 29-31, 1984, Contrib. Nephrol. 44 (1985) 1-294 [35] Q.L. Zhang, X.L. Lu, J.J. Liu, L.H. Zhao, Preparation and preliminary dialysis performance research of polyvinylidene fluoride hollow fiber membranes, Membranes 5 (1) (2015) 120-135 [36] K. Heilmann, T. Keller, Polysulfone:The Development of a Membrane for Convective Therapies, Int J Non Linear Mech 175 (2011) 15-26 [37] R.A. Ward, K.R. McLeish, Hemodialysis with cellulose membranes primes the neutrophil oxidative burst, Artif. Organs 19 (8) (1995) 801-807 [38] M. Omichi, M. Matsusaki, I. Maruyama, M. Akashi, Improvement of blood compatibility on polysulfone-polyvinylpyrrolidone blend films as a model membrane of dialyzer by physical adsorption of recombinant soluble human thrombomodulin (ART-123), J. Biomater. Sci. Polym. Ed. 23 (5) (2012) 593-608 [39] Q. Chen, Y. He, Y.P. Zhao, L. Chen, Intervening oxidative stress integrated with an excellent biocompatibility of hemodialysis membrane fabricated by nucleobase-recognized co-immobilization strategy of tannic acid, looped PEtOx brush and heparin, J. Membr. Sci. 625 (2021) 119174 [40] A.L. Gao, F. Liu, L.X. Xue, Preparation and evaluation of heparin-immobilized poly (lactic acid) (PLA) membrane for hemodialysis, J. Membr. Sci. 452 (2014) 390-399 [41] B.V. Dang, R.A. Taylor, A.J. Charlton, P. Le-Clech, T.J. Barber, Toward portable artificial kidneys:the role of advanced microfluidics and membrane technologies in implantable systems, IEEE Rev. Biomed. Eng. 13 (2020) 261-279 [42] M.T. Sultan, B.M. Moon, J.W. Yang, O.J. Lee, S.H. Kim, J.S. Lee, Y.J. Lee, Y.B. Seo, D.Y. Kim, O. Ajiteru, G.Y. Sung, C.H. Park, Recirculating peritoneal dialysis system using urease-fixed silk fibroin membrane filter with spherical carbonaceous adsorbent, Mater. Sci. Eng. C 97 (2019) 55-66 [43] J. Luo, J.B. Fan, S.T. Wang, Recent progress of microfluidic devices for hemodialysis, Small 16 (9) (2020) e1904076 [44] M.S.L. Tijink, M. Wester, G. Glorieux, K.G.F. Gerritsen, J.F. Sun, P.C. Swart, Z. Borneman, M. Wessling, R. Vanholder, J.A. Joles, D. Stamatialis, Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma, Biomaterials 34 (32) (2013) 7819-7828 [45] S.P. Ding, T.H. Zhang, P.Y. Li, X.F. Wang, Dialysis/adsorption bifunctional thin-film nanofibrous composite membrane for creatinine clearance in portable artificial kidney, J. Membr. Sci. 636 (2021) 119550 [46] A.A. Demetriou, J. Rozga, L. Podesta, E. Lepage, E. Morsiani, A.D. Moscioni, A. Hoffman, M. McGrath, L. Kong, H. Rosen, F. Villamil, G. Woolf, J. Vierling, L. Makowka, Early clinical experience with a hybrid bioartificial liver, Scand. J. Gastroenterol. 30 (sup208) (1995) 111-117 [47] J.C. Gerlach, J. Encke, O. Hole, C. Müller, C.J. Ryan, P. Neuhaus, Bioreactor for a larger scale hepatocyte in vitro perfusion, Transplantation 58 (9) (1994) 984-988 [48] H. Shiraha, N. Koide, H. Hada, K. Ujike, M. Nakamura, T. Shinji, S. Gotoh, T. Tsuji, Improvement of serum amino acid profile in hepatic failure with the bioartificial liver using multicellular hepatocyte spheroids, Biotechnol. Bioeng. 50 (4) (1996) 416-421 [49] L. de Bartolo, S. Salerno, E. Curcio, A. Piscioneri, M. Rende, S. Morelli, F. Tasselli, A. Bader, E. Drioli, Human hepatocyte functions in a crossed hollow fiber membrane bioreactor, Biomaterials 30 (13) (2009) 2531-2543 [50] K.N. Matsumura, G.R. Guevara, H. Huston, W.L. Hamilton, M. Rikimaru, G. Yamasaki, M.S. Matsumura, Hybrid bioartificial liver in hepatic failure:preliminary clinical report, Surgery 101 (1) (1987) 99-103 [51] N.L. Sussman, M.G. Chong, T. Koussayer, D.E. He, T.A. Shang, H.H. Whisennand, J.H. Kelly, Reversal of fulminant hepatic failure using an extracorporeal liver assist device, Hepatology 16 (1) (1992) 60-65 [52] S.H. Ye, J. Watanabe, M. Takai, Y. Iwasaki, K. Ishihara, High functional hollow fiber membrane modified with phospholipid polymers for a liver assist bioreactor, Biomaterials 27 (9) (2006) 1955-1962 [53] S. Ahmed, A. Kaplan, Therapeutic plasma exchange using membrane plasma separation, Clin. J. Am. Soc. Nephrol. 15 (9) (2020) 1364-1370 [54] K. Wang, H. Seol, X. Liu, H.F. Wang, G. Cheng, S. Kim, Ultralow-fouling zwitterionic polyurethane-modified membranes for rapid separation of plasma from whole blood, Langmuir 37 (33) (2021) 10115-10125 [55] J.J. Liu, X.L. Lu, G.M. Shu, F.F. Ni, K. Li, X. Kong, S.Y. Zheng, R.H. Ma, T. Li, H. Liu, J. Yang, Structure design and performance study on filtration-adsorption bifunctional blood purification membrane, J. Membr. Sci. 636 (2021) 119535 [56] S. Leal-Marin, T. Kern, N. Hofmann, O. Pogozhykh, C. Framme, M. Börgel, C. Figueiredo, B. Glasmacher, O. Gryshkov, Human Amniotic Membrane:a review on tissue engineering, application, and storage, J. Biomed. Mater. Res. B Appl. Biomater. 109 (8) (2021) 1198-1215 [57] I. Inci, A. Norouz Dizaji, C. Ozel, U. Morali, F. Dogan Guzel, H. Avci, Decellularized inner body membranes for tissue engineering:a review, J. Biomater. Sci. Polym. Ed. 31 (10) (2020) 1287-1368 [58] C.Y. Wang, S.L. Wang, H. Pan, L.L. Min, H.L. Zheng, H. Zhu, G. Liu, W.Z. Yang, X.Y. Chen, X. Hou, Bioinspired liquid gating membrane-based catheter with anticoagulation and positionally drug release properties, Sci. Adv. 6 (36) (2020):eabb4700 [59] L. Shi, Y.H. Liu, K. Li, A. Sharma, K.K. Yu, M.S. Ji, L.L. Li, Q. Zhou, H. Zhang, J.S. Kim, X.Q. Yu, An AIE-based probe for rapid and ultrasensitive imaging of plasma membranes in biosystems, Angew. Chem. Int. Ed Engl. 59 (25) (2020) 9962-9966 [60] A.M. Haleem, C.R. Chu, Advances in tissue engineering techniques for articular cartilage repair, Oper. Tech. Orthop. 20 (2) (2010) 76-89 [61] E.A. Makris, A.H. Gomoll, K.N. Malizos, J.C. Hu, K.A. Athanasiou, Repair and tissue engineering techniques for articular cartilage, Nat. Rev. Rheumatol. 11 (1) (2015) 21-34 [62] J. Kasuya, K. Tanishita, Microporous membrane-based liver tissue engineering for the reconstruction of three-dimensional functional liver tissues in vitro, Biomatter 2 (4) (2012) 290-295 [63] A. Arefin, J.H. Huang, D. Platts, V.D. Hypes, J.F. Harris, R. Iyer, P. Nath, Fabrication of flexible thin polyurethane membrane for tissue engineering applications, Biomed. Microdevices 19 (4) (2017) 98 [64] L. Gustafsson, C.P. Tasiopoulos, R. Jansson, M. Kvick, T. Duursma, T.C. Gasser, W. Wijngaart, M. Hedhammar, Recombinant spider silk forms tough and elastic nanomembranes that are protein-permeable and support cell attachment and growth, Adv. Funct. Mater. 30 (40) (2020) 2002982 [65] N. Watcharajittanont, C. Putson, P. Pripatnanont, J. Meesane, Layer-by-layer electrospun membranes of polyurethane/silk fibroin based on mimicking of oral soft tissue for guided bone regeneration, Biomed Mater 14 (5) (2019) 055011 [66] W. Bonani, W. Singhatanadgige, A. Pornanong, A. Motta, Natural origin materials for osteochondral tissue engineering, Adv. Exp. Med. Biol. 1058 (2018) 3-30 [67] B.L. Guo, P.X. Ma, Synthetic biodegradable functional polymers for tissue engineering:a brief review, Sci. China Chem. 57 (4) (2014) 490-500 [68] M. Parekh, V. Romano, K. Hassanin, V. Testa, R. Wongvisavavit, S. Ferrari, A. Haneef, C. Willoughby, D. Ponzin, V. Jhanji, N. Sharma, J. Daniels, S.B. Kaye, S. Ahmad, H.J. Levis, Biomaterials for corneal endothelial cell culture and tissue engineering, J. Tissue Eng. 12 (2021) 2041731421990536 [69] M.C. Bottino, V. Thomas, Membranes for periodontal regeneration:a materials perspective, Front. Oral Biol. 17 (2015) 90-100 [70] M.C. Bottino, V. Thomas, G. Schmidt, Y.K. Vohra, T.M.G. Chu, M.J. Kowolik, G.M. Janowski, Recent advances in the development of GTR/GBR membranes for periodontal regeneration:a materials perspective, Dent. Mater. 28 (7) (2012) 703-721 [71] Y.Y. Xue, Z. Zhu, X. Zhang, J.Y. Chen, X. Yang, X.M. Gao, S. Zhang, F. Luo, J. Wang, W.F. Zhao, C. Huang, X.B. Pei, Q.B. Wan, Accelerated bone regeneration by MOF modified multifunctional membranes through enhancement of osteogenic and angiogenic performance, Adv. Healthcare Mater. 10 (6) (2021) 2001369 [72] A. Nasajpour, S. Ansari, C. Rinoldi, A.S. Rad, T. Aghaloo, S.R. Shin, Y.K. Mishra, R. Adelung, W. Swieszkowski, N. Annabi, A. Khademhosseini, A. Moshaverinia, A. Tamayol, Tissue regeneration:a multifunctional polymeric periodontal membrane with osteogenic and antibacterial characteristics (adv. funct. mater. 3/2018), Adv. Funct. Mater. 28 (3) (2018) 1870021 [73] G.L. Koons, M.N. Diba, A.G. Mikos, Materials design for bone-tissue engineering, Nat. Rev. Mater. 5 (8) (2020) 584-603 [74] Y.M. Yu, Z. Xiong, J.L. Li, Z.Y. Wu, Y.Z. Wang, F. Liu, Surface PEGylation on PLA membranes via micro-swelling and crosslinking for improved biocompatibility/hemocompatibility, RSC Adv. 130 (5) (2015) 107949-107956 [75] P.Y. Zhou, X.S. Cheng, Y. Xia, P.F. Wang, K.D. Zou, S.G. Xu, J.Z. Du, Organic/inorganic composite membranes based on poly(L-lactic-co-glycolic acid) and mesoporous silica for effective bone tissue engineering, ACS Appl. Mater. Interfaces 6 (23) (2014) 20895-20903 [76] M. Gong, C. Chi, J.J. Ye, M.H. Liao, W.Q. Xie, C.G. Wu, R. Shi, L.Q. Zhang, Icariin-loaded electrospun PCL/gelatin nanofiber membrane as potential artificial periosteum, Colloids Surf. B Biointerfaces 170 (2018) 201-209 [77] N. Udomluck, H. Lee, S. Hong, S.H. Lee, H. Park, Surface functionalization of dual growth factor on hydroxyapatite-coated nanofibers for bone tissue engineering, Appl. Surf. Sci. 520 (2020) 146311 [78] D. Lee, D.N. Heo, S.J. Lee, M. Heo, J. Kim, S. Choi, H.K. Park, Y.G. Park, H.N. Lim, I.K. Kwon, Poly(lactide-co-glycolide) nanofibrous scaffolds chemically coated with gold-nanoparticles as osteoinductive agents for osteogenesis, Appl. Surf. Sci. 432 (2018) 300-307 [79] K. Ren, Y. Wang, T. Sun, W. Yue, H.Y. Zhang, Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes, Mater. Sci. Eng. C Mater. Biol. Appl. 78 (2017) 324-332 [80] L. Sabouri, A. Farzin, A. Kabiri, P.B. Milan, M. Farahbakhsh, A. Mehdizadehkashi, A. Kajbafzadeh, A. Samadikuchaksaraei, F. Yousefbeyk, M. Azami, M. Moghtadaei, Mineralized human amniotic membrane as a biomimetic scaffold for hard tissue engineering applications, ACS Biomater. Sci. Eng. 6 (11) (2020) 6285-6298 [81] J. Wang, Y.N. Qu, C.Q. Chen, J. Sun, H.H. Pan, C.Y. Shao, R.K. Tang, X.H. Gu, Fabrication of collagen membranes with different intrafibrillar mineralization degree as a potential use for GBR, Mater. Sci. Eng. C Mater. Biol. Appl. 104 (2019) 109959 [82] Z.H. Lu, W.G. Wang, J. Zhang, P. Bártolo, H. Gong, J.S. Li, Electrospun highly porous poly(L-lactic acid)-dopamine-SiO2 fibrous membrane for bone regeneration, Mater. Sci. Eng. C 117 (2020) 111359 [83] M. Alehosseini, N. Golafshan, M. Kharaziha, M. Fathi, H. Edris, Hemocompatible and bioactive heparin-loaded PCL-α-TCP fibrous membranes for bone tissue engineering, Macromol. Biosci. 18 (6) (2018) e1800020 [84] S. Thanyaphoo, J. Kaewsrichan, A new biocompatible delivery scaffold containing heparin and bone morphogenetic protein 2, Acta Pharm. 66 (3) (2016) 373-385 [85] L. Hidalgo Pitaluga, M. Trevelin Souza, E. Dutra Zanotto, M. Santocildes Romero, P. Hatton, Electrospun F18 bioactive glass/PCL-poly (ε-caprolactone)-membrane for guided tissue regeneration, Materials 11 (3) (2018) 400 [86] M. Farokhi, F. Mottaghitalab, S. Samani, M.A. Shokrgozar, S.C. Kundu, R.L. Reis, Y. Fatahi, D.L. Kaplan, Silk fibroin/hydroxyapatite composites for bone tissue engineering, Biotechnol. Adv. 36 (1) (2018) 68-91 [87] H.S. Jeong, J. Venkatesan, S.K. Kim, Hydroxyapatite-fucoidan nanocomposites for bone tissue engineering, Int. J. Biol. Macromol. 57 (2013) 138-141 [88] M.M. Hasani-Sadrabadi, P. Sarrion, N. Nakatsuka, T.D. Young, N. Taghdiri, S. Ansari, T. Aghaloo, S. Li, A. Khademhosseini, P.S. Weiss, A. Moshaverinia, Hierarchically patterned polydopamine-containing membranes for periodontal tissue engineering, ACS Nano 13 (4) (2019) 3830-3838 [89] B. He, X. Yuan, J. Wu, Y. Bai, D.M. Jiang, Self-assembling peptide nanofiber scaffolds for bone tissue engineering, Sci. Adv. Mater. 7 (7) (2015) 1221-1232 [90] R. Visser, G.A. Rico-Llanos, H. Pulkkinen, J. Becerra, Peptides for bone tissue engineering, J. Control. Release 244 (2016) 122-135 [91] G. Calabrese, S. Petralia, C. Fabbi, S. Forte, D. Franco, S. Guglielmino, E. Esposito, S. Cuzzocrea, F. Traina, S. Conoci, Au, Pd and maghemite nanofunctionalized hydroxyapatite scaffolds for bone regeneration, Regen. Biomater. 7 (5) (2020) 461-469 [92] J. Radwan-Pragłowska, Ł. Janus, M. Piątkowski, D. Bogdał, D. Matysek, 3D hierarchical, nanostructured chitosan/PLA/HA scaffolds doped with TiO2/Au/Pt NPs with tunable properties for guided bone tissue engineering, Polymers 12 (4) (2020) 792 [93] S. Wang, R.Y. Li, Y.A. Qing, Y.Z. Wei, Q.F. Wang, T.R. Zhang, C. Sun, Y.G. Qin, D.D. Li, J.H. Yu, Antibacterial activity of Ag-incorporated zincosilicate zeolite scaffolds fabricated by additive manufacturing, Inorg. Chem. Commun. 105 (2019) 31-35 [94] M.L. Mejia, M.E. Moncada, C.P. Ossa-Orozco, Poly (vinyl alcohol)/Silk Fibroin/Ag NPs composite nanofibers for bone tissue engineering, Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2021 (2021) 1176-1180 [95] S.F. Mansour, S.I. El-Dek, S.V. Dorozhkin, M.K. Ahmed, Physico-mechanical properties of Mg and Ag doped hydroxyapatite/chitosan biocomposites, New J. Chem. 41 (22) (2017) 13773-13783 [96] B. Felice, M.A. Sánchez, M.C. Socci, L.D. Sappia, M.I. Gómez, M.K. Cruz, C.J. Felice, M. Martí, M.I. Pividori, G. Simonelli, A.P. Rodríguez, Controlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity, Mater. Sci. Eng. C 93 (2018) 724-738 [97] F. Liu, B.J. Wei, X.Y. Xu, B.J. Ma, S. Zhang, J.Z. Duan, Y. Kong, H.R. Yang, Y.H. Sang, S.H. Wang, W. Tang, C. Liu, H. Liu, Nanocellulose-reinforced hydroxyapatite nanobelt membrane as a stem cell multi-lineage differentiation platform for biomimetic construction of bioactive 3D osteoid tissue in vitro, Adv. Healthc. Mater. 10 (8) (2021) e2001851 [98] K.Y. Chen, W.J. Liao, S.M. Kuo, F.J. Tsai, Y.S. Chen, C.Y. Huang, C.H. Yao, Asymmetric chitosan membrane containing collagen I nanospheres for skin tissue engineering, Biomacromolecules 10 (6) (2009) 1642-1649 [99] T. Cui, J. Yu, Q. Li, C.F. Wang, S. Chen, W. Li, G.F. Wang, Large-scale fabrication of robust artificial skins from a biodegradable sealant-loaded nanofiber scaffold to skin tissue via microfluidic blow-spinning, Adv.Mater. 32 (32) (2020) 2000982 [100] Q. Chen, J. Wu, Y. Liu, Y. Li, C. Zhang, W. Qi, K. Yeung, T. Wong, X. Zhao, Electrospun chitosan/PVA/bioglass nanofibrous membrane with spatially designed structure for accelerating chronic wound healing, Mater. Sci. Eng., C 105 (2019) 110083 [101] W.T. Wang, T. Zheng, B.L. Sheng, T.C. Zhou, Q.C. Zhang, F. Wu, N.L. Zhou, J. Shen, M. Zhang, Y. Sun, Functionalization of polyvinyl alcohol composite film wrapped in am-ZnO@CuO@Au nanoparticles for antibacterial application and wound healing, Appl. Mater. Today 17 (2019) 36-44 [102] G.R. Jin, M.P. Prabhakaran, B.P. Nadappuram, G. Singh, D. Kai, S. Ramakrishna, Electrospun poly(L-lactic acid)-co-poly(∈-caprolactone) nanofibres containing silver nanoparticles for skin-tissue engineering, J. Biomater. Sci. Polym. Ed. 23 (18) (2012) 2337-2352 [103] F. Wahid, X.J. Zhao, X.Q. Zhao, X.F. Ma, N. Xue, X.Z. Liu, F.P. Wang, S.R. Jia, C. Zhong, Fabrication of bacterial cellulose-based dressings for promoting infected wound healing, ACS Appl. Mater. Interfaces 13 (28) (2021) 32716-32728 [104] Y.B. Feng, Q. Wang, M. He, X. Zhang, X.L. Liu, C.S. Zhao, Antibiofouling zwitterionic gradational membranes with moisture retention capability and sustained antimicrobial property for chronic wound infection and skin regeneration, Biomacromolecules 20 (8) (2019) 3057-3069 [105] A. Madni, R. Khan, M. Ikram, S.S. Naz, T. Khan, F. Wahid, Fabrication and characterization of chitosan-vitamin C-lactic acid composite membrane for potential skin tissue engineering, Int. J. Polym. Sci. 2019 (2019) 4362395 [106] S.C. Jiang, P. Song, H.L. Guo, X. Zhang, Y.J. Ren, H.C. Liu, X.F. Song, M.M. Kong, Blending PLLA/tannin-grafted PCL fiber membrane for skin tissue engineering, J. Mater. Sci. 52 (3) (2017) 1617-1624 [107] F.H. Zulkifli, F.S.J. Hussain, M.S.B.A. Rasad, M. Mohd Yusoff, Nanostructured materials from hydroxyethyl cellulose for skin tissue engineering, Carbohydr. Polym. 114 (2014) 238-245 [108] Y. Zhang, L.H. Lu, Y.P. Chen, J. Wang, Y.Y. Chen, C.B. Mao, M.Y. Yang, Polydopamine modification of silk fibroin membranes significantly promotes their wound healing effect, Biomater. Sci. 7 (12) (2019) 5232-5237 [109] C. Dunnill, T. Patton, J. Brennan, J. Barrett, M. Dryden, J. Cooke, D. Leaper, N.T. Georgopoulos, Reactive oxygen species (ROS) and wound healing:the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process, Int. Wound J. 14 (1) (2017) 89-96 [110] S.Y. Liu, J.L. Ru, F.Z. Liu, NiP/CuO composites:Electroless plating synthesis, antibiotic photodegradation and antibacterial properties, Chemosphere 267 (2021) 129220 [111] I. Dror, L. Fink, L. Weiner, B. Berkowitz, Elucidating the catalytic degradation of enrofloxacin by copper oxide nanoparticles through the identification of the reactive oxygen species, Chemosphere 258 (2020) 127266 [112] P.F. Li, L.M. Ruan, R.F. Wang, T.Q. Liu, G. Song, X.F. Gao, G.H. Jiang, X.Y. Liu, Electrospun scaffold of collagen and polycaprolactone containing ZnO quantum dots for skin wound regeneration, J. Bionic Eng. 18 (6) (2021) 1378-1390 [113] A.J. Liu, X.Y. Chen, H. Yi, F. Li, D.F. Chen, Accelerating the healing of skin defects transplanted FSC-seeded tissue-engineered skin, J. Biomater. Tissue Eng. 5 (7) (2015) 574-578 [114] G. Papavasiliou, M.H. Cheng, E.M. Brey, Strategies for vascularization of polymer scaffolds, J. Investig. Med. 58 (7) (2010) 838-844 [115] X.Y. Wang, Z.P. Wang, S. Fang, Y.Z. Hou, X. Du, Y.L. Xie, Q. Xue, X.F. Zhou, X. Yuan, Injectable Ag nanoclusters-based hydrogel for wound healing via eliminating bacterial infection and promoting tissue regeneration, Chem. Eng. J. 420 (2021) 127589 [116] L.J. Currie, J.R. Sharpe, R. Martin, The use of fibrin glue in skin grafts and tissue-engineered skin replacements:a review, Plast. Reconstr. Surg. 108 (6) (2001) 1713-1726 [117] C.M. Han, L.P. Zhang, J.Z. Sun, H.F. Shi, J. Zhou, C.Y. Gao, Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering, J. Zhejiang Univ. Sci. B 11 (7) (2010) 524-530 [118] R.N. Palchesko, S.D. Carrasquilla, A.W. Feinberg, Natural biomaterials for corneal tissue engineering, repair, and regeneration, Adv. Healthc. Mater. 7 (16) (2018) e1701434 [119] W.C. Li, Y.Y. Long, Y. Liu, K. Long, S. Liu, Z.C. Wang, Y.J. Wang, L. Ren, Fabrication and characterization of chitosan-collagen crosslinked membranes for corneal tissue engineering, J. Biomater. Sci. Polym. Ed. 25 (17) (2014) 1962-1972 [120] X.K. Wang, S. Majumdar, U. Soiberman, J.N. Webb, L. Chung, G. Scarcelli, J.H. Elisseeff, Multifunctional synthetic Bowman's membrane-stromal biomimetic for corneal reconstruction, Biomaterials 241 (2020) 119880 [121] X.M. Sun, X.J. Yang, W.J. Song, L. Ren, Construction and evaluation of collagen-based corneal grafts using polycaprolactone to improve tension stress, ACS Omega 5 (1) (2020) 674-682 [122] L.Y. Zhang, D.L. Zou, S.M. Li, J.Q. Wang, Y. Qu, S.K. Ou, C.K. Jia, J. Li, H. He, T.T. Liu, J. Yang, Y.X. Chen, Z.G. Liu, W. Li, An ultra-thin amniotic membrane as carrier in corneal epithelium tissue-engineering, Sci. Rep. 6 (2016) 21021 [123] J. van Hoorick, J. Delaey, H. Vercammen, J. van Erps, H. Thienpont, P. Dubruel, N. Zakaria, C. Koppen, S. van Vlierberghe, B. van den Bogerd, Designer descemet membranes containing PDLLA and functionalized gelatins as corneal endothelial scaffold, Adv Healthc Mater 9 (16) (2020) e2000760 [124] K. Long, Y. Liu, W.C. Li, L. Wang, S. Liu, Y.J. Wang, Z.C. Wang, L. Ren, Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering, J. Biomed. Mater. Res. 103 (3) (2015) 1159-1168 [125] S. Kinoshita, T. Nakamura, Development of cultivated mucosal epithelial sheet transplantation for ocular surface reconstruction, Artif. Organs 28 (1) (2004) 22-27 [126] Z. Hancox, S. Heidari Keshel, S. Yousaf, M. Saeinasab, M.A. Shahbazi, F. Sefat, The progress in corneal translational medicine, Biomater. Sci. 8 (23) (2020) 6469-6504 [127] M. Grolik, K. Szczubialka, B. Wowra, D. Dobrowolski, B. Orzechowska-Wylegala, E. Wylegala, M. Nowakowska, Hydrogel membranes based on genipin-cross-linked chitosan blends for corneal epithelium tissue engineering, J Mater Sci Mater Med 23 (8) (2012) 1991-2000 [128] Z. Chen, J.J. You, X. Liu, S. Cooper, C. Hodge, G. Sutton, J.M. Crook, G.G. Wallace, Biomaterials for corneal bioengineering, Biomed. Mater. 13 (3) (2018) 032002 [129] J. Fernández-Pérez, K.E. Kador, A.P. Lynch, M. Ahearne, Characterization of extracellular matrix modified poly(ε-caprolactone) electrospun scaffolds with differing fiber orientations for corneal stroma regeneration, Mater. Sci. Eng. C 108 (2020) 110415 [130] R. Williams, R. Lace, S. Kennedy, K. Doherty, H. Levis, Biomaterials for regenerative medicine approaches for the anterior segment of the eye, Adv Healthc Mater 7 (10) (2018) e1701328 [131] Y. Liang, W.S. Liu, B.Q. Han, C.Z. Yang, Q. Ma, W.W. Zhao, M. Rong, H. Li, Fabrication and characters of a corneal endothelial cells scaffold based on chitosan, J. Mater. Sci. Mater. Med. 22 (1) (2011) 175-183 [132] E.Y. Kim, N. Tripathy, J.Y. Park, S.E. Lee, C.K. Joo, G. Khang, Silk fibroin film as an efficient carrier for corneal endothelial cells regeneration, Macromol. Res. 23 (2) (2015) 189-195 [133] A.N. Mitropoulos, B. Marelli, C.E. Ghezzi, M.B. Applegate, B.P. Partlow, D.L. Kaplan, F.G. Omenetto, Transparent, nanostructured silk fibroin hydrogels with tunable mechanical properties, ACS Biomater. Sci. Eng. 1 (10) (2015) 964-970 [134] S.S. Zhang, J.J. Li, Z.P. Yin, X.F. Zhang, S.C. Kundu, S.Z. Lu, Silk fibroin composite membranes for application in corneal regeneration, J. Appl. Polym. Sci. 132 (32) (2015):42407 [135] S. Sharma, D. Gupta, S. Mohanty, M. Jassal, A.K. Agrawal, R. Tandon, Surface-modified electrospun poly(epsilon-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction, Invest. Ophthalmol. Vis. Sci. 55 (2) (2014) 899-907 [136] S. Salehi, M. Fathi, S.H. Javanmard, T. Bahners, J.S. Gutmann, S. Ergün, K.P. Steuhl, T.A. Fuchsluger, Generation of PGS/PCL blend nanofibrous scaffolds mimicking corneal stroma structure, Macromol. Mater. Eng. 299 (4) (2014) 455-469 [137] X.Q. Fan, J.Z. Chen, C.X. Yan, M.Y. Zhu, Q.K. Yao, C.Y. Shao, W.J. Lu, J. Wang, X.M. Mo, P. Gu, Y. Fu, Electrospun nanofibrous SF/P(LLA-CL) membrane:a potential substratum for endothelial keratoplasty, Int. J. Nanomed. (2015) 3337 [138] J. Yan, L.H. Qiang, Y. Gao, X.J. Cui, H.Y. Zhou, S.L. Zhong, Q. Wang, H.Y. Wang, Effect of fiber alignment in electrospun scaffolds on keratocytes and corneal epithelial cells behavior, J. Biomed. Mater. Res. A 100A (2) (2012) 527-535 [139] S.J. Yu, L.T. Pan, Y.M. Zhang, X.Y. Chen, X. Hou, Liquid gating technology, Pure Appl. Chem. 93 (12) (2021) 1353-1370 [140] J. Zhang, B.Y. Chen, X.Y. Chen, X. Hou, Liquid-based adaptive structural materials (adv. mater. 50/2021), Adv. Mater. 33 (50) (2021) 2170397 [141] T. Songjaroen, W. Dungchai, O. Chailapakul, C.S. Henry, W. Laiwattanapaisal, Blood separation on microfluidic paper-based analytical devices, Lab Chip 12 (18) (2012) 3392-3398 [142] X.Z. Zhang, Y.Z. Zhu, W.X. Fang, L.L. Gui, J.Y. Zhang, A.Q. Wang, J. Jin, Thin film composite structured Janus membrane for fast gravity-driven separation of a trace of blood, J. Membr. Sci. 620 (2021) 118853 [143] X.Y. Fan, C.P. Jia, J. Yang, G. Li, H.J. Mao, Q.H. Jin, J.L. Zhao, A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells, Biosens. Bioelectron. 71 (2015) 380-386 [144] Z.Y. Chu, W. Zhang, Q.N. You, X.Y. Yao, T. Liu, G.P. Liu, G.R. Zhang, X.P. Gu, Z.L. Ma, W.Q. Jin, A separation-sensing membrane performing precise real-time serum analysis during blood drawing, Angew. Chem. Int. Ed. 59 (42) (2020) 18701-18708 [145] W.B. Zhang, L. Hu, H.M. Chen, S.J. Gao, X.C. Zhang, J. Jin, Mineralized growth of Janus membrane with asymmetric wetting property for fast separation of a trace of blood, J. Mater. Chem. B 5 (25) (2017) 4876-4882 [146] H.M. Wu, C.F. Shi, Q. Zhu, Y. Li, Z.K. Xu, C.J. Wei, D.J. Chen, X.J. Huang, Capillary-driven blood separation and in situ electrochemical detection based on 3D conductive gradient hollow fiber membrane, Biosens. Bioelectron. 171 (2021) 112722 [147] C. Alix-Panabières, S. Riethdorf, K. Pantel, Circulating tumor cells and bone marrow micrometastasis, Clin. Cancer Res. 14 (16) (2008) 5013-5021 [148] Y.J. Kim, Y.T. Kang, Y.H. Cho, Poly(ethylene glycol)-modified tapered-slit membrane filter for efficient release of captured viable circulating tumor cells, Anal. Chem. 88 (16) (2016) 7938-7945 [149] N. Sun, J.E. Wang, L.Y. Ji, S.N. Hong, J.J. Dong, Y.H. Guo, K.C. Zhang, R.J. Pei, A cellular compatible chitosan nanoparticle surface for isolation and in situ culture of rare number CTCs, Small 11 (40) (2015) 5444-5451 [150] J.D. Wang, W.J. Lu, C.H. Tang, Y. Liu, J.S. Sun, X. Mu, L. Zhang, B. Dai, X.Y. Li, H.L. Zhuo, X.Y. Jiang, Label-free isolation and mRNA detection of circulating tumor cells from patients with metastatic lung cancer for disease diagnosis and monitoring therapeutic efficacy, Anal. Chem. 87 (23) (2015) 11893-11900 [151] Y.C. Ma, L. Wang, F.L. Yu, Recent advances and prospects in the isolation by size of epithelial tumor cells (ISET) methodology, Technol. Cancer Res. Treat. 12 (4) (2013) 295-309 [152] P. Bankó, S.Y. Lee, V. Nagygyörgy, M. Zrínyi, C.H. Chae, D.H. Cho, A. Telekes, Technologies for circulating tumor cell separation from whole blood, J. Hematol. Oncol. 12 (1) (2019) 48 [153] S.Y. Zheng, H.K. Lin, B. Lu, A. Williams, R. Datar, R.J. Cote, Y.C. Tai, 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood, Biomed. Microdevices 13 (1) (2011) 203-213 [154] J.F. Yee-de León, B. Soto-García, D. Aráiz-Hernández, J.R. Delgado-Balderas, M. Esparza, C. Aguilar-Avelar, J.D. Wong-Campos, F. Chacón, J.Y. López-Hernández, A.M. González-Treviño, J.R. Yee-de León, J.L. Zamora-Mendoza, M.M. Alvarez, G. Trujillo-de Santiago, L.S. Gómez-Guerra, C.N. Sánchez-Domínguez, L.P. Velarde-Calvillo, A. Abarca-Blanco, Characterization of a novel automated microfiltration device for the efficient isolation and analysis of circulating tumor cells from clinical blood samples, Sci. Rep. 10 (2020) 7543 [155] N. Sun, X.P. Li, Z.L. Wang, Y.Z. Li, R.J. Pei, High-purity capture of CTCs based on micro-beads enhanced isolation by size of epithelial tumor cells (ISET) method, Biosens. Bioelectron. 102 (2018) 157-163 [156] F.Y. Tang, Z.M. Shao, M.Y. Ni, Y.S. Cui, C.S. Yuan, H.X. Ge, Fabrication of perforated polyethylene microfiltration membranes for circulating tumor cells separation by thermal nanoimprint method, Appl. Phys. A 125 (1) (2019) 1-7 [157] I. Desitter, B.S. Guerrouahen, N. Benali-Furet, J. Wechsler, P.A. Janne, Y.A. Kuang, M. Yanagita, L.L. Wang, J.A. Berkowitz, R.J. Distel, Y.E. Cayre, A new device for rapid isolation by size and characterization of rare circulating tumor cells, Anticancer Res. 31 (2) (2011) 427-441 [158] N. Kihara, H. Odaka, D. Kuboyama, D. Onoshima, K. Ishikawa, Y. Baba, M. Hori, Facile fabrication of a poly(ethylene terephthalate) membrane filter with precise arrangement of through-holes, Jpn. J. Appl. Phys. 57 (3) (2018) 037001 [159] J.H. Yuan, K. Wang, X.H. Xia, Highly ordered platinum-nanotubule arrays for amperometric glucose sensing, Adv. Funct. Mater. 15 (5) (2005) 803-809 [160] M. Darder, P. Aranda, M. Hernández-Vélez, E. Manova, E. Ruiz-Hitzky, Encapsulation of enzymes in alumina membranes of controlled pore size, Thin Solid Films 495 (1-2) (2006) 321-326 [161] E.M.I.M. Ekanayake, D.M.G. Preethichandra, K. Kaneto, Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors, Biosens. Bioelectron. 23 (1) (2007) 107-113 [162] P. Jain, L. Sun, J.H. Dai, G.L. Baker, M.L. Bruening, High-capacity purification of His-tagged proteins by affinity membranes containing functionalized polymer brushes, Biomacromolecules 8 (10) (2007) 3102-3107 [163] G.K. Prasad, J.P. Kumar, P.V.R.K. Ramacharyulu, B. Singh, Breakthrough behaviour of activated charcoal cloth samples against oxygen analogue of sulphur mustard, Carbon Lett. 16 (1) (2015) 19-24 [164] H.D. Costa Araújo, T. da Silva Arouche, R.N. de Carvalho Jr, T. Castro Ramalho, R.D. Santos Borges, M.S. de Oliveira, F.D. Chagas Marques, A.M. de Jesus Chaves Neto, Interactions of ozone-functionalized activated charcoal with SARS-cov-2 proteases using molecular docking and dynamics, J. Nanosci. Nanotechnol. 21 (12) (2021) 6060-6072 [165] S.S. Kiani, A. Farooq, M. Ahmad, N. Irfan, M. Nawaz, M.A. Irshad, Impregnation on activated carbon for removal of chemical warfare agents (CWAs) and radioactive content, Environ. Sci. Pollut. Res. 28 (43) (2021) 60477-60494 [166] W.A. Eudailey, Membrane filters and membrane-filtration processes for health care, Am. J. Hosp. Pharm. 40 (11) (1983) 1921-1923 [167] M. Khandaker, H. Progri, D.T. Arasu, S. Nikfarjam, N. Shamim, Use of polycaprolactone electrospun nanofiber mesh in a face mask, Materials 14 (15) (2021) 4272 [168] D. Kharaghani, M.Q. Khan, A. Shahrzad, Y. Inoue, T. Yamamoto, S. Rozet, Y. Tamada, I.S. Kim, Preparation and in-vitro assessment of hierarchal organized antibacterial breath mask based on polyacrylonitrile/silver (PAN/AgNPs) nanofiber, Nanomaterials (Basel) 8 (7) (2018) 461 [169] W.K. Essa, S.A. Yasin, I.A. Saeed, G.A.M. Ali, Nanofiber-based face masks and respirators as COVID-19 protection:a review, Membranes 11 (4) (2021) 250 [170] A. Salam, T. Hassan, T. Jabri, S. Riaz, A. Khan, K.M. Iqbal, S.U. Khan, M. Wasim, M.R. Shah, M.Q. Khan, I.S. Kim, Electrospun nanofiber-based viroblock/ZnO/PAN hybrid antiviral nanocomposite for personal protective applications, Nanomaterials 11 (9) (2021) 2208 [171] G.X. Liu, J.H. Nie, C.B. Han, T. Jiang, Z.W. Yang, Y.K. Pang, L. Xu, T. Guo, T.Z. Bu, C. Zhang, Z.L. Wang, Self-powered electrostatic adsorption face mask based on a triboelectric nanogenerator, ACS Appl. Mater. Interfaces 10 (8) (2018) 7126-7133 [172] Y. Wibisono, C.R. Fadila, S. Saiful, M.R. Bilad, Facile approaches of polymeric face masks reuse and reinforcements for micro-aerosol droplets and viruses filtration:a review, Polymers 12 (11) (2020) 2516 [173] L. de Sio, B. Ding, M. Focsan, K. Kogermann, P. Pascoal-Faria, F. Petronela, G. Mitchell, E. Zussman, F. Pierini, Personalized reusable face masks with smart nano-assisted destruction of pathogens for COVID-19:a visionary road, Chem. Eur. J. 27 (20) (2021) 6112-6130 [174] J.W. Wu, H.J. Zhou, J.Y. Zhou, X. Zhu, B.W. Zhang, S.S. Feng, Z.X. Zhong, L.X. Kong, W.H. Xing, Meltblown fabric vs nanofiber membrane, which is better for fabricating personal protective equipments, Chin. J. Chem. Eng. 36 (2021) 1-9 [175] X.Y. Du, Q. Li, G. Wu, S. Chen, Multifunctional micro/nanoscale fibers based on microfluidic spinning technology, Adv. Mater. 31 (52) (2019) 1903733 [176] D. Wang, N. Liu, W.L. Xu, G. Sun, Layer-by-layer structured nanofiber membranes with photoinduced self-cleaning functions, J. Phys. Chem. C 115 (14) (2011) 6825-6832 [177] C.M. Costa, J. Nunes-Pereira, V. Sencadas, M.M. Silva, S. Lanceros-Méndez, Effect of fiber orientation in gelled poly(vinylidene fluoride) electrospun membranes for Li-ion battery applications, J. Mater. Sci. 48 (19) (2013) 6833-6840 [178] C. Huang, S. Chen, D.H. Reneker, C. Lai, H. Hou, High-strength mats from electrospun poly(p-phenylene biphenyltetracarboximide) nanofibers, Adv. Mater. 18 (5) (2006) 668-671 [179] N. Karim, S. Afroj, K. Lloyd, L.C. Oaten, D.V. Andreeva, C. Carr, A.D. Farmery, I.D. Kim, K.S. Novoselov, Sustainable personal protective clothing for healthcare applications:a review, ACS Nano 14 (10) (2020) 12313-12340 [180] Y. Han, S.K. Obendorf, Reactivity and reusability of immobilized zinc oxide nanoparticles in fibers on methyl parathion decontamination, Text. Res. J. 86 (4) (2016) 339-349 [181] P. Kumar, S. Roy, A. Sarkar, A. Jaiswal, Reusable MoS2-modified antibacterial fabrics with photothermal disinfection properties for repurposing of personal protective masks, ACS Appl. Mater. Interfaces 13 (11) (2021) 12912-12927 [182] E. Horváth, L. Rossi, C. Mercier, C. Lehmann, A. Sienkiewicz, L. Forró, Photocatalytic nanowires-based air filter:towards reusable protective masks, Adv. Funct. Mater. (2020) 2020Aug7;2004615 [183] S. Sundarrajan, S. Ramakrishna, Fabrication of nanocomposite membranes from nanofibers and nanoparticles for protection against chemical warfare stimulants, J. Mater. Sci. 42 (20) (2007) 8400-8407 [184] M. Roso, S. Sundarrajan, D. Pliszka, S. Ramakrishna, M. Modesti, Multifunctional membranes based on spinning technologies:the synergy of nanofibers and nanoparticles, Nanotechnology 19 (28) (2008) 285707 [185] N.L. Lala, R. Ramaseshan, B.J. Li, S. Sundarrajan, R.S. Barhate, Y.J. Liu, S. Ramakrishna, Fabrication of nanofibers with antimicrobial functionality used as filters:protection against bacterial contaminants, Biotechnol. Bioeng. 97 (6) (2007) 1357-1365 [186] S.M. Li, Q. Yang, Y. Ye, Preparation of activated carbon from herbal residues and kinetics of cephalosporin antibiotic adsorption in wastewater, BioResources 12 (2) (2017):2768-2779 [187] S.N. Oba, J.O. Ighalo, C.O. Aniagor, C.A. Igwegbe, Removal of ibuprofen from aqueous media by adsorption:a comprehensive review, Sci. Total. Environ. 780 (2021) 146608 [188] P. Kokkinos, D. Venieri, D. Mantzavinos, Advanced oxidation processes for water and wastewater viral disinfection. A systematic review, Food Environ. Virol. 13 (3) (2021) 283-302 [189] A.H. Khan, N.A. Khan, S. Ahmed, A. Dhingra, C.P. Singh, S.U. Khan, A.A. Mohammadi, F. Changani, M. Yousefi, S. Alam, S. Vambol, V. Vambol, A. Khursheed, I. Ali, Application of advanced oxidation processes followed by different treatment technologies for hospital wastewater treatment, J. Clean. Prod. 269 (2020) 122411 [190] P. Kajitvichyanukul, M.C. Lu, C.H. Liao, W. Wirojanagud, T. Koottatep, Degradation and detoxification of formaline wastewater by advanced oxidation processes, J. Hazard. Mater. 135 (1-3) (2006) 337-343 [191] F.S. Souza, V.V. da Silva, C.K. Rosin, L. Hainzenreder, A. Arenzon, T. Pizzolato, L. Jank, L.A. Féris, Determination of pharmaceutical compounds in hospital wastewater and their elimination by advanced oxidation processes, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 53 (3) (2018) 213-221 [192] X.W. Ao, J. Eloranta, C.H. Huang, D. Santoro, W.J. Sun, Z.D. Lu, C. Li, Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water:a review, Water Res. 188 (2021) 116479 [193] T. Tran, T. Nguyen, H. Ho, D. Le, T. Lam, D. Nguyen, A. Hoang, T. Do, L. Hoang, T. Nguyen, L. Bach, Integration of membrane bioreactor and nanofiltration for the treatment process of real hospital wastewater in Ho Chi Minh City, Vietnam, Processes 7 (3) (2019) 123 [194] S. Beier, S. Köster, K. Veltmann, H. Schröder, J. Pinnekamp, Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis, Water Sci. Technol. 61 (7) (2010) 1691-1698 [195] T.U. Kim, G. Amy, J.E. Drewes, Rejection of trace organic compounds by high-pressure membranes, Water Sci. Technol. 51 (6-7) (2005) 335-344 [196] E.J. Rosenfeldt, K.G. Linden, Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes, Environ. Sci. Technol. 38 (20) (2004) 5476-5483 [197] F.J. Beltrán, M. González, J.F. González, Industrial wastewater advanced oxidation. Part 1. UV radiation in the presence and absence of hydrogen peroxide, Water Res. 31 (10) (1997) 2405-2414 [198] M. Pierpaoli, A. Dettlaff, M. Szopińska, K. Karpienko, M. Wróbel, A. Łuczkiewicz, S. Fudala-Książek, R. Bogdanowicz, Simultaneous opto-electrochemical monitoring of carbamazepine and its electro-oxidation by-products in wastewater, J. Hazard. Mater. 419 (2021) 126509 [199] M. Trapido, N. Kulik, A. Goi, Y. Veressinina, R. Munter, Fenton treatment efficacy for the purification of different kinds of wastewater, Water Sci. Technol. 60 (7) (2009) 1795-1801 [200] J. Berto, G.C. Rochenbach, M.A.B. Barreiros, A.X.R. Corrêa, S. Peluso-Silva, C.M. Radetski, Physico-chemical, microbiological and ecotoxicological evaluation of a septic tank/Fenton reaction combination for the treatment of hospital wastewaters, Ecotoxicol. Environ. Saf. 72 (4) (2009) 1076-1081 [201] E. Elmolla, M. Chaudhuri, Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution, J. Hazard. Mater. 170 (2-3) (2009) 666-672 [202] S. Beier, C. Cramer, C. Mauer, S. Köster, H.F. Schröder, J. Pinnekamp, MBR technology:a promising approach for the (pre-) treatment of hospital wastewater, Water Sci. Technol. 65 (9) (2012) 1648-1653 [203] J. Radjenovic, M. Petrovic, D. Barceló, Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor, Anal. Bioanal. Chem. 387 (4) (2007) 1365-1377 [204] S. Oota, T. Murakami, K. Takemura, K. Noto, Evaluation of MBR effluent characteristics for reuse purposes, Water Sci. Technol. 51 (6-7) (2005) 441-446 [205] X.Y. Song, R. Liu, L.J. Chen, T. Kawagishi, Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR:simultaneous removal of nitrogen and antibiotics, Front. Environ. Sci. Eng. 11 (2) (2017) 1-9 [206] X.L. Yang, J.Y. Xu, H.L. Song, X. Wang, T. Li, Enhanced removal of antibiotics in wastewater by membrane bioreactor with addition of rice straw, Int. Biodeterior. Biodegrad. 148 (2020) 104868 [207] Y.G. Wang, X. Wang, M.W. Li, J. Dong, C.H. Sun, G.Y. Chen, Removal of pharmaceutical and personal care products (PPCPs) from municipal waste water with integrated membrane systems, MBR-RO/NF, Int. J. Environ. Res. Public Heal. 15 (2) (2018) 269 [208] Y. Ouarda, B. Tiwari, A. Azaïs, M.A. Vaudreuil, S.D. Ndiaye, P. Drogui, R.D. Tyagi, S. Sauvé, M. Desrosiers, G. Buelna, R. Dubé, Synthetic hospital wastewater treatment by coupling submerged membrane bioreactor and electrochemical advanced oxidation process:kinetic study and toxicity assessment, Chemosphere 193 (2018) 160-169 [209] C. Köhler, S. Venditti, E. Igos, K. Klepiszewski, E. Benetto, A. Cornelissen, Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology:a comparative assessment, J. Hazard. Mater. 239-240 (2012) 70-77 [210] Z.Z. Sheng, J. Zhang, J. Liu, Y.M. Zhang, X.Y. Chen, X. Hou, Liquid-based porous membranes, Chem. Soc. Rev. 49 (22) (2020) 7907-7928 [211] Y. Fan, Z.Z. Sheng, J. Chen, H. Pan, B.Y. Chen, F. Wu, S.L. Wang, X.Y. Chen, X. Hou, Visual chemical detection mechanism by a liquid gating system with dipole-induced interfacial molecular reconfiguration, Angew. Chem. Int. Ed. 58 (12) (2019) 3967-3971 [212] S.L. Wang, Y.M. Zhang, Y.H. Han, Y.Q. Hou, Y. Fan, X. Hou, Design of porous membranes by liquid gating technology, Acc. Mater. Res. 2 (6) (2021) 407-419 |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||