中国化学工程学报 ›› 2022, Vol. 49 ›› Issue (9): 21-33.DOI: 10.1016/j.cjche.2022.03.011
• Special Column: Membranes for Life Science • 上一篇 下一篇
Wenjun Zhang1,2, Wenshu Ge1,2, Min Li1, Shuangqing Li1,2, Minqiang Jiang1,2, Xiujuan Zhang1,2, Gaohong He1,2
收稿日期:
2021-09-30
修回日期:
2022-03-02
发布日期:
2022-10-19
通讯作者:
Gaohong He,E-mail:hgaohong@dlut.edu.cn
基金资助:
Wenjun Zhang1,2, Wenshu Ge1,2, Min Li1, Shuangqing Li1,2, Minqiang Jiang1,2, Xiujuan Zhang1,2, Gaohong He1,2
Received:
2021-09-30
Revised:
2022-03-02
Published:
2022-10-19
Contact:
Gaohong He,E-mail:hgaohong@dlut.edu.cn
Supported by:
摘要: As a branch of membrane separation technology, liquid membrane has attracted great attention and expanded investigations in biological chemical engineering, with life and health concern in ecosystems. Composed of membrane solvent and mobile carrier, liquid membrane was acquired of function, performing the facilitated mass transfer across the diffusive solvent, so as for the separation and delivery achievement with efficacy. In this review, two types of liquid membrane are mainly focused, respectively on supported liquid membrane (SLM) of membrane solvent supporter in necessity, and on emulsion liquid membrane (ELM) of the required interfacial stabilizers and homogenization. Accordingly, the transfer mechanism, compositions, structure and features of SLM and ELM are introduced respectively. Moreover, the current investigations of liquid membrane have been discussed, focusing on the improvements of efficacy and stability in separation & detection, encapsulation and delivery, so as to scale up the favorable and efficient application with bio-life concern. Prospectively, this review could provide comprehensive insight into the bio-applications of liquid membrane, and guidelines for the further investigations on the efficacy and long-term applicable stability, in order to realize the industrialization.
Wenjun Zhang, Wenshu Ge, Min Li, Shuangqing Li, Minqiang Jiang, Xiujuan Zhang, Gaohong He. Short review on liquid membrane technology and their applications in biochemical engineering[J]. 中国化学工程学报, 2022, 49(9): 21-33.
Wenjun Zhang, Wenshu Ge, Min Li, Shuangqing Li, Minqiang Jiang, Xiujuan Zhang, Gaohong He. Short review on liquid membrane technology and their applications in biochemical engineering[J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 21-33.
[1] B.S. Priyanka, N.K. Rastogi, Encapsulation of β-amylase in water-oil-water enzyme emulsion liquid membrane (EELM) bioreactor for enzymatic conversion of starch to maltose, Prep. Biochem. Biotechnol. 50 (2) (2020) 172-180.https://pubmed.ncbi.nlm.nih.gov/31846387/ [2] Zhang W.J., Mao Q., Yu Y. D., Li M., Ge W.S., He G.H., Study on efficient separation of calcium and magnesium in concentrated brine by emulsion liquid membrane with bis(2-ethylhexyl) phosphate and dibenzo-18-crown-6 as dual carriers. Modern Chemical Industry, 41 (2021),135-139 [3] R. Bloch, A. Finkelstein, O. Kedem, D. Vofsi, Metal-ion seperations by dialysis through solvent membranes, Ind. Eng. Chem. Proc. Des. Dev. 6 (2) (1967) 231-237.Doi:10.1021/i260022a014 [4] L.N. Norman, Membrane separation process, US 3410794 A,1968. [5] T. Wongsawa, N. Traiwongsa, U. Pancharoen, K. Nootong, A review of the recovery of precious metals using ionic liquid extractants in hydrometallurgical processes, Hydrometallurgy 198 (2020) 105488.Doi:10.1016/j.hydromet.2020.105488 [6] T.R. Reddy, N.N. Meeravali, A.V.R. Reddy, Reverse micelle mediated bulk liquid membrane separation of platinum gold and silver from real samples, Sep. Sci. Technol. 48 (12) (2013) 1859-1866. Doi:10.1080/01496395.2013.763708 [7] N.F. Mohamed Noah, N. Othman, S. Bachok, N. Abdullah, Palladium extraction using emulsion liquid membrane process-stability study, Adv. Mater. Res. 1113 (2015) 376-381. Doi:10.4028/www.scientific.net/AMR.1113.376 [8] A. Dâas, O. Hamdaoui, Removal of non-steroidal anti-inflammatory drugs ibuprofen and ketoprofen from water by emulsion liquid membrane, Environ. Sci. Pollut. Res. Int. 21 (3) (2014) 2154-2164.https://pubmed.ncbi.nlm.nih.gov/24037298/ [9] D.D. Agreda, I. García-Díaz, F. López, F. Alguacil, Supported liquid membranes technologies in metals removal from liquid effluents, Revista De Met. 47 (2011) 146-168. Doi:10.3989/REVMETALMADRID.1062 [10] M.D. Granado-Castro, M.J. Casanueva-Marenco, M.D. Galindo-Riaño, H.E. Mai, M. Díaz-de-Alba, A separation and preconcentration process for metal speciation using a liquid membrane:a case study for iron speciation in seawater, Mar. Chem. 198 (2018) 56-63. Doi:10.1016/j.marchem.2017.11.009 [11] F. Falaki, F. Shemirani, M. Shamsipur, Surfactant-assisted transport of lead ion through a bulk liquid membrane containing dicyclohexyl-18-crown-6:efficient removal of lead from blood serum and sea water, J. Iran. Chem. Soc. 13 (7) (2016) 1257-1263. Doi:10.1007/s13738-016-0839-5 [12] T. Hoshino, Preliminary studies of lithium recovery technology from seawater by electrodialysis using ionic liquid membrane, Desalination 317 (2013) 11-16. Doi:10.1016/j.desal.2013.02.014 [13] X.T. Feng, S. Toufouki, Z.C. Li, Y.N. Li, S. Yao, A highly hyphenated preparative method with emulsion liquid membrane extraction-in situ magnetization-magnetic separation for bioactive constituents from typical medicinal plant, Sep. Purif. Technol. 275 (2021) 119249. Doi:10.1016/j.seppur.2021.119249 [14] A. Sawant, S. Kamath, H. Kg, G.P. Kulyadi, Solid-in-oil-in-water emulsion:an innovative paradigm to improve drug stability and biological activity, AAPS PharmSciTech 22 (5) (2021) 199.https://pubmed.ncbi.nlm.nih.gov/34212274/ [15] N. Sunsandee, P. Ramakul, N. Thamphiphit, U. Pancharoen, N. Leepipatpiboon, The synergistic effect of selective separation of (S)-amlodipine from pharmaceutical wastewaters via hollow fiber supported liquid membrane, Chem. Eng. J. 209 (2012) 201-214. Doi:10.1016/J.CEJ.2012.07.136 [16] S. Bhowal, B.S. Priyanka, N.K. Rastogi, Mixed reverse micelles facilitated downstream processing of lipase involving water-oil-water liquid emulsion membrane, Biotechnol. Prog. 30 (5) (2014) 1084-1092. Doi:10.1002/btpr.1941 [17] T. Pirom, N. Sunsandee, T. Wongsawa, P. Ramakul, U. Pancharoen, K. Nootong, The effect of temperature on mass transfer and thermodynamic parameters in the removal of amoxicillin via hollow fiber supported liquid membrane, Chem. Eng. J. 265 (2015) 75-83. Doi:10.1016/j.cej.2014.12.037 [18] D.J. McClements, C.E. Gumus, Natural emulsifiers-Biosurfactants, phospholipids, biopolymers, and colloidal particles:molecular and physicochemical basis of functional performance, Adv. Colloid Interface Sci. 234 (2016) 3-26.https://pubmed.ncbi.nlm.nih.gov/27181392/ [19] F. Garavand, S.H. Razavi, I. Cacciotti, Synchronized extraction and purification of L-lactic acid from fermentation broth by emulsion liquid membrane technique, J. Dispers. Sci. Technol. 39 (9) (2018) 1291-1299. Doi:10.1080/01932691.2017.1396225 [20] V. Pilařová, M. Sultani, K.S. Ask, L. Nováková, S. Pedersen-Bjergaard, A. Gjelstad, One-step extraction of polar drugs from plasma by parallel artificial liquid membrane extraction, J. Chromatogr. B 1043 (2017) 25-32. Doi:10.1016/j.jchromb.2016.09.019 [21] M.N. Zarandi, A. Soltani, Emulsion liquid membrane design in vitro for removal of lead from aqueous solution, Orient. J. Chem 34 (6) (2018) 2747-2754. Doi:10.13005/ojc/340609 [22] T. Zheng, S. Pilla, Encapsulating hydrophilic solution by PU-PMF double-component capsule based on water-in-oil-in-oil emulsion template, Macromol. Chem. Phys. 219 (4) (2018) 1700418. Doi:10.1002/macp.201700418 [23] M.A. Hussein, A.A. Mohammed, M.A. Atiya, Application of emulsion and Pickering emulsion liquid membrane technique for wastewater treatment:an overview, Environ. Sci. Pollut. Res. 26 (36) (2019) 36184-36204. Doi:10.1007/s11356-019-06652-3 [24] C.X. Tang, Y.M. Chen, J.H. Luo, M.Y. Low, Z.Q. Shi, J.T. Tang, Z. Zhang, B.L. Peng, K.C. Tam, Pickering emulsions stabilized by hydrophobically modified nanocellulose containing various structural characteristics, Cellulose 26 (13-14) (2019) 7753-7767. Doi:10.1007/s10570-019-02648-x [25] X.D. Wang, K.X. Yu, R. An, L.L. Han, Y.L. Zhang, L.Y. Shi, R. Ran, Self-assembling GO/modified HEC hybrid stabilized Pickering emulsions and template polymerization for biomedical hydrogels, Carbohydr. Polym. 207 (2019) 694-703.https://pubmed.ncbi.nlm.nih.gov/30600055/ [26] H.Q. Yan, X.Q. Chen, M.X. Feng, Z.F. Shi, W. Zhang, Y. Wang, C.R. Ke, Q. Lin, Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery, Colloids Surf. B Biointerfaces 177 (2019) 112-120.https://pubmed.ncbi.nlm.nih.gov/30716696/ [27] H. Jiang, L.D. Liu, Y.X. Li, S.W. Yin, T. Ngai, Inverse Pickering emulsion stabilized by binary particles with contrasting characteristics and functionality for interfacial biocatalysis, ACS Appl. Mater. Interfaces 12 (4) (2020) 4989-4997.https://pubmed.ncbi.nlm.nih.gov/31909591/ [28] Tai Z, Huang Y, Zhu Q, Wu W, Yi T, Chen Z, Lu Y, Utility of Pickering emulsions in improved oral drug delivery, Drug Discov. Today (2020) 2020Sep17;S1359-2020Sep17;S6446(20)30370-6.https://pubmed.ncbi.nlm.nih.gov/32949702/ [29] X.N. Tan, J. Han, M. Lee, The effect of curcumin delivery using peptide micelles to pancreatic beta cells under the hypoxia condition, J. Control. Release 213 (2015) e118-e119. Doi:10.1016/j.jconrel.2015.05.199 [30] Tashkhourian, M. A. J. Highly selective transport of Ag+ ion through a liquid membrane containing 2-mercaptobenzothiazole as a carrier. Bulletin of the Korean Chemical Society, 24 (2003) 489-493 [31] S.H. Chang, Vegetable oil as organic solvent for wastewater treatment in liquid membrane processes, Desalination Water Treat. 52 (1-3) (2014) 88-101. Doi:10.1080/19443994.2013.782829 [32] A.L. Ahmad, A. Kusumastuti, C.J.C. Derek, B.S. Ooi, Emulsion liquid membrane for heavy metal removal:an overview on emulsion stabilization and destabilization, Chem. Eng. J. 171 (3) (2011) 870-882. Doi:10.1016/j.cej.2011.05.102 [33] N.D. Zaulkiflee, A.L. Ahmad, N.F. Che Lah, M.M.H. Shah Buddin, Removal of emerging contaminants by emulsion liquid membrane:perspective and challenges, Environ. Sci. Pollut. Res. 29 (9) (2022) 12997-13023. Doi:10.1007/s11356-021-16658-5 [34] F.J. Alguacil, M. Alonso, A.M. Sastre, Modelling of mass transfer in facilitated supported liquid membrane transport of copper(II) using MOC-55 TD in Iberfluid, J. Membr. Sci. 184 (1) (2001) 117-122. Doi:10.1016/S0376-7388(00)00614-1 [35] P. Izák, W. Ruth, Z.F. Fei, P.J. Dyson, U. Kragl, Selective removal of acetone and butan-1-ol from water with supported ionic liquid-polydimethylsiloxane membrane by pervaporation, Chem. Eng. J. 139 (2) (2008) 318-321. Doi:10.1016/j.cej.2007.08.001 [36] M. Garmsiri, H.R. Mortaheb, Enhancing performance of hybrid liquid membrane process supported by porous anionic exchange membranes for removal of cadmium from wastewater, Chem. Eng. J. 264 (2015) 241-250. Doi:10.1016/j.cej.2014.11.061 [37] F. Tajabadi, M. Ghambarian, Carrier-mediated extraction:applications in extraction and microextraction methods, Talanta 206 (2020) 120145.https://pubmed.ncbi.nlm.nih.gov/31514894/ [38] Basudev Swain, H.-W. S. a. C. G. L. Extraction/Separations of cobalt by supported liquid membrane:A Review. Korean Chem. Eng. Res., 57 (2019) 313-320 [39] Mohagheghi, E.; Alemzadeh, I.; Vossoughi, M. Study and optimization of aAmino acid extraction by emulsion liquid membrane. Separation Science and Technology, 43 (2008) 3075-3096 [40] S.C. Lee, Continuous extraction of penicillin G by emulsion liquid membranes with optimal surfactant compositions, Chem. Eng. J. 79 (1) (2000) 61-67. Doi:10.1016/S1385-8947(00)00173-X [41] H. Sun, J. Yao, D. Li, Q. Li, B. Liu, S. Liu, H. Cong, S. van Agtmaal, C.H. Feng, Removal of phenols from coal gasification wastewater through polypropylene hollow fiber supported liquid membrane, Chem. Eng. Res. Des. 123 (2017) 277-283. Doi:10.1016/j.cherd.2017.05.009 [42] P. Praveen, K.C. Loh, Simultaneous extraction and biodegradation of phenol in a hollow fiber supported liquid membrane bioreactor, J. Membr. Sci. 430 (2013) 242-251. Doi:10.1016/j.memsci.2012.12.021 [43] G. Saik Su, N. Morad, N. Ismail, M. Rafatullah, Developments in supported liquid membranes for treatment of metal-bearing wastewater, Sep. Purif. Rev. 51 (1) (2022) 38-56. Doi:10.1080/15422119.2020.1828100 [44] B. Zhang, G. Gozzelino, G. Baldi, Membrane liquid loss of supported liquid membrane based on n-decanol, Colloids Surf. A Physicochem. Eng. Aspects 193 (1-3) (2001) 61-70. Doi:10.1016/S0927-7757(01)00688-4 [45] W.D. Zhang, C.H. Cui, Y.Q. Yang, Mass transfer of copper(II) in hollow fiber renewal liquid membrane with different carriers, Chin. J. Chem. Eng. 18 (2) (2010) 346-350. Doi:10.1016/S1004-9541(08)60363-8 [46] S.G. Bhavya, B.S. Priyanka, N.K. Rastogi, Reverse micelles-mediated transport of lipase in liquid emulsion membrane for downstream processing, Biotechnol. Prog. 28 (6) (2012) 1542-1550.https://pubmed.ncbi.nlm.nih.gov/23011754/ [47] A.L. Ahmad, A. Kusumastuti, C.J.C. Derek, B.S. Ooi, Emulsion liquid membrane for cadmium removal:studies on emulsion diameter and stability, Desalination 287 (2012) 30-34. Doi:10.1016/j.desal.2011.11.002 [48] Sirisansaneeyakul, S.; Chainoy, R.; Vanichsriratana, W.; Srinophakun, T.; Chisti, Y. Xylitol production by liquid emulsion membrane encapsulated yeast cells. Journal of Chemical Technology & Biotechnology, 84 (2009) 1218-1228 [49] M.S. Gasser, N.E. El-Hefny, J.A. Daoud, Extraction of Co(II) from aqueous solution using emulsion liquid membrane, J. Hazard. Mater. 151 (2-3) (2008) 610-615. Doi:10.1016/j.jhazmat.2007.06.032 [50] J.M. Benito, A. Cambiella, A. Lobo, G. Gutiérrez, J. Coca, C. Pazos, Formulation, characterization and treatment of metalworking oil-in-water emulsions, Clean Technol. Environ. Policy 12 (1) (2010) 31-41. Doi:10.1007/s10098-009-0219-2 [51] Pickering, S. U. CXCVI.-Emulsions. J. Chem. Soc., Trans., 91 (1907) 2001-2021 [52] R.T. Wu, A. Menner, A. Bismarck, Tough interconnected polymerized medium and high internal phase emulsions reinforced by silica particles, J. Polym. Sci. A Polym. Chem. 48 (9) (2010) 1979-1989. Doi:10.1002/pola.23965 [53] A.J. Wang, T. Paterson, R. Owen, C. Sherborne, J. Dugan, J.M. Li, F. Claeyssens, Photocurable high internal phase emulsions (HIPEs) containing hydroxyapatite for additive manufacture of tissue engineering scaffolds with multi-scale porosity, Mater. Sci. Eng. C 67 (2016) 51-58. Doi:10.1016/j.msec.2016.04.087 [54] Q.X. Gao, C.Y. Wang, H.X. Liu, C.H. Wang, X.X. Liu, Z. Tong, Suspension polymerization based on inverse Pickering emulsion droplets for thermo-sensitive hybrid microcapsules with tunable supracolloidal structures, Polymer 50 (12) (2009) 2587-2594. Doi:10.1016/j.polymer.2009.03.049 [55] Y.T. Xu, T.X. Liu, C.H. Tang, Novel Pickering high internal phase emulsion gels stabilized solely by soy β-conglycinin, Food Hydrocoll. 88 (2019) 21-30. Doi:10.1016/j.foodhyd.2018.09.031 [56] E. Perrin, H. Bizot, B. Cathala, I. Capron, Chitin nanocrystals for Pickering high internal phase emulsions, Biomacromolecules 15 (10) (2014) 3766-3771.https://pubmed.ncbi.nlm.nih.gov/25180643/ [57] Q.H. Chen, J. Zheng, Y.T. Xu, S.W. Yin, F. Liu, C.H. Tang, Surface modification improves fabrication of Pickering high internal phase emulsions stabilized by cellulose nanocrystals, Food Hydrocoll. 75 (2018) 125-130. Doi:10.1016/j.foodhyd.2017.09.005 [58] T. Yang, J. Zheng, B.S. Zheng, F. Liu, S.J. Wang, C.H. Tang, High internal phase emulsions stabilized by starch nanocrystals, Food Hydrocoll. 82 (2018) 230-238. Doi:10.1016/j.foodhyd.2018.04.006 [59] C. Linke, S. Drusch, Pickering emulsions in foods-opportunities and limitations, Crit. Rev. Food Sci. Nutr. 58 (12) (2018) 1971-1985. Doi:10.1080/10408398.2017.1290578 [60] J.Q. Su, Q. Guo, S.F. Yang, H. Li, L.K. Mao, Y.X. Gao, F. Yuan, Electrostatic deposition of polysaccharide onto soft protein colloidal particles:enhanced rigidity and potential application as Pickering emulsifiers, Food Hydrocoll. 110 (2021) 106147. Doi:10.1016/j.foodhyd.2020.106147 [61] X.X. Lu, C. Li, Q.R. Huang, Combining in vitro digestion model with cell culture model:assessment of encapsulation and delivery of curcumin in milled starch particle stabilized Pickering emulsions, Int. J. Biol. Macromol. 139 (2019) 917-924.https://pubmed.ncbi.nlm.nih.gov/31401275/ [62] J. Frelichowska, M.A. Bolzinger, J.P. Valour, H. Mouaziz, J. Pelletier, Y. Chevalier, Pickering w/o emulsions:drug release and topical delivery, Int. J. Pharm. 368 (1-2) (2009) 7-15. Doi:10.1016/j.ijpharm.2008.09.057 [63] G. Llorens-Blanch, M. Badia-Fabregat, D. Lucas, S. Rodriguez-Mozaz, D. Barceló, T. Pennanen, G. Caminal, P. Blánquez, Degradation of pharmaceuticals from membrane biological reactor sludge with Trametes versicolor, Environ. Sci.:Processes Impacts 17 (2) (2015) 429-440. Doi:10.1039/c4em00579a [64] J.L. Wang, S.Z. Wang, Removal of pharmaceuticals and personal care products (PPCPs) from wastewater:a review, J. Environ. Manage. 182 (2016) 620-640.https://pubmed.ncbi.nlm.nih.gov/27552641/ [65] Y. Yamini, C.T. Reimann, A. Vatanara, J.A. Jönsson, Extraction and preconcentration of salbutamol and terbutaline from aqueous samples using hollow fiber supported liquid membrane containing anionic carrier, J. Chromatogr. A 1124 (1-2) (2006) 57-67.https://pubmed.ncbi.nlm.nih.gov/16716341/ [66] S. Zorita, L. Mårtensson, L. Mathiasson, Hollow-fibre supported liquid membrane extraction for determination of fluoxetine and norfluoxetine concentration at ultra trace level in sewage samples, J. Sep. Sci. 30 (15) (2007) 2513-2521.https://pubmed.ncbi.nlm.nih.gov/17763523/ [67] Sagrista, E.; Larsson, E.; Ezoddin, M.; Hidalgo, M.; Salvado, V.; Jonsson, J. A. Determination of non-steroidal anti-inflammatory drugs in sewage sludge by direct hollow fiber supported liquid membrane extraction and liquid chromatography-mass spectrometry. J Chromatogr A, 1217 (2010), 6153-6158 [68] M. Hedayati, S.A. Razavi, S. Boroomand, S.K. Kia, The impact of pre-analytical variations on biochemical analytes stability:a systematic review, J Clin Lab Anal 34 (12) (2020) e23551.https://pubmed.ncbi.nlm.nih.gov/32869910/ [69] Gjelstad, A.; Rasmussen, K. E.; Parmer, M. P.; Pedersen-Bjergaard, S. Parallel artificial liquid membrane extraction:micro-scale liquid-liquid-liquid extraction in the 96-well format. Bioanalysis, 5 (2013), 1377-1385 [70] M. Roldán-Pijuán, S. Pedersen-Bjergaard, A. Gjelstad, Parallel artificial liquid membrane extraction of acidic drugs from human plasma, Anal. Bioanal. Chem. 407 (10) (2015) 2811-2819. Doi:10.1007/s00216-015-8505-9 [71] K.N. Olsen, K.S. Ask, S. Pedersen-Bjergaard, A. Gjelstad, Parallel artificial liquid membrane extraction of psychoactive analytes:a novel approach in therapeutic drug monitoring, Bioanalysis 10 (6) (2018) 385-395. Doi:10.4155/bio-2017-0250 [72] G.C. Sahoo, N.N. Dutta, Studies on emulsion liquid membrane extraction of cephalexin, J. Membr. Sci. 145 (1) (1998) 15-26. Doi:10.1016/S0376-7388(98)00027-1 [73] Z. Seifollahi, A. Rahbar-Kelishami, Diclofenac extraction from aqueous solution by an emulsion liquid membrane:parameter study and optimization using the response surface methodology, J. Mol. Liq. 231 (2017) 1-10. Doi:10.1016/j.molliq.2017.01.081 [74] Z. Seifollahi, A. Rahbar-Kelishami, Amoxicillin extraction from aqueous solution by emulsion liquid membranes using response surface methodology, Chem. Eng. Technol. 42 (1) (2019) 156-166. Doi:10.1002/ceat.201800089 [75] T.A. Razo-Lazcano, M. Stambouli, M.D.P. González-Muñoz, D. Pareau, M. Ávila-Rodríguez, Emulsion liquid membranes for recovery of ibuprofen from aqueous solutions, J. Chem. Technol. Biotechnol 89 (6) (2014) 890-898. Doi:10.1002/jctb.4329 [76] A.L. Ahmad, Z. Shafie, N.D. Zaulkiflee, W.Y. Pang, Preliminary study of emulsion liquid membrane formulation on acetaminophen removal from the aqueous phase, Membranes 9 (10) (2019) 133.https://pubmed.ncbi.nlm.nih.gov/31623108/ [77] B.A. Kikani, S. Pandey, S.P. Singh, Immobilization of the α-amylase of Bacillus amyloliquifaciens TSWK1-1 for the improved biocatalytic properties and solvent tolerance, Bioprocess Biosyst. Eng. 36 (5) (2013) 567-577. Doi:10.1007/s00449-012-0812-3 [78] B.S. Priyanka, N.K. Rastogi, Selective extraction of lipase and amylase from enzyme mixture by employing liquid emulsion membrane, Biotechnol. Prog. 34 (3) (2018) 721-729.https://pubmed.ncbi.nlm.nih.gov/29464895/ [79] J.Q. Shen, W.P. Yin, Y.X. Zhao, L.J. Yu, Extraction of alanine using emulsion liquid membranes featuring a cationic carrier, J. Membr. Sci. 120 (1) (1996) 45-53. Doi:10.1016/0376-7388(96)00158-5 [80] Ruey-ShinJuang, Y.-Y. Amino acid separation with D2EHPA by solvent extraction and liquid surfactant membranes. Journal of Membrane Science, 207 (2002), 241-252 [81] S.C. Lee, Extraction of succinic acid from simulated media by emulsion liquid membranes, J. Membr. Sci. 381 (1-2) (2011) 237-243. Doi:10.1016/j.memsci.2011.07.039 [82] E. Bayraktar, Response surface optimization of the separation of dl-tryptophan using an emulsion liquid membrane, Process. Biochem. 37 (2) (2001) 169-175. Doi:10.1016/S0032-9592(01)00192-3 [83] J. Frankenfeld, G. Fuller, C. Rhodes, Potential use of liquid membranes for emergency treatment of drug overdose, Drug Development Communications, 2(4-5) (1976) 405-419.https://www.semanticscholar.org/paper/12f1bbc4d99bfddd72213b272cead7400b00214d [84] https://www.semanticscholar.org/paper/12f1bbc4d99bfddd72213b272cead7400b00214d[84] W.J. Zhang, M. Stambouli, D. Pareau, Detoxifying emulsion for overdosed aspirin intoxication, Int. J. Pharm. 441 (1-2) (2013) 598-602.https://pubmed.ncbi.nlm.nih.gov/23124108/ [85] S. Frasca, P. Couvreur, M. Seiller, D. Pareau, B. Lacour, M. Stambouli, J.L. Grossiord, Paraquat detoxication with multiple emulsions, Int. J. Pharm. 380 (1-2) (2009) 142-146. Doi:10.1016/j.ijpharm.2009.07.016 [86] Hamoudeh, M.; Seiller, M.; Chauvierre, C.; Auchère, D.; Lacour, B.; Pareau, D.; Stambouli, M.; Grossiord, J. L. Formulation of stable detoxifying w/o/w reactive multiple emulsions:in vitro evaluation. Journal of Drug Delivery Science and Technology, 16 (2006), 223-228 [87] T.F. Bian, X.J. Zhang, G.H. He, Z.J. Duan, C.X. Dong, X.C. Li, N.N. Guo, Citric acid-loaded W1/O/W2 multiple emulsions efficiently remove colonic ammonia both in vitro and in vivo, J. Dispers. Sci. Technol. 38 (1) (2017) 1-7. Doi:10.1080/01932691.2015.1038750 [88] W.J. Asher, T.C. Vogler, K.C. Bovee, P.G. Holtrapple, R.W. Hamilton, Liquid membrane capsules for treatment of uremia, J. Dial. 1 (3) (1977) 261-284. Doi:10.3109/08860227709039148 [89] Y.Y. Shi, Y.M. Zhang, H.J. Tian, Y.F. Wang, Y. Shen, Q.Y. Zhu, F. Ding, Improved dialytic removal of protein-bound uremic toxins by intravenous lipid emulsion in chronic kidney disease rats, Nephrol. Dial. Transplant 34 (11) (2019) 1842-1852.https://pubmed.ncbi.nlm.nih.gov/31071223/ [90] R.V. Tikekar, Y.J. Pan, N. Nitin, Fate of curcumin encapsulated in silica nanoparticle stabilized Pickering emulsion during storage and simulated digestion, Food Res. Int. 51 (1) (2013) 370-377. Doi:10.1016/j.foodres.2012.12.027 [91] J. Han, F.L. Chen, C.C. Gao, Y. Zhang, X.Z. Tang, Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum Arabic nanoparticles, Int. J. Biol. Macromol. 157 (2020) 202-211. Doi:10.1016/j.ijbiomac.2020.04.177 [92] B.R. Shah, Y. Li, W.P. Jin, Y.P. An, L. He, Z.S. Li, W. Xu, B. Li, Preparation and optimization of Pickering emulsion stabilized by chitosan-tripolyphosphate nanoparticles for curcumin encapsulation, Food Hydrocoll. 52 (2016) 369-377. Doi:10.1016/j.foodhyd.2015.07.015 [93] P.F. Lv, D. Wang, Y.L. Chen, S.X. Zhu, J.B. Zhang, L.K. Mao, Y.X. Gao, F. Yuan, Pickering emulsion gels stabilized by novel complex particles of high-pressure-induced WPI gel and chitosan:Fabrication, characterization and encapsulation, Food Hydrocoll. 108 (2020) 105992. Doi:10.1016/j.foodhyd.2020.105992 [94] I. Dammak, R.V. Lourenço, P.J.D.A. Sobral, Active gelatin films incorporated with Pickering emulsions encapsulating hesperidin:preparation and physicochemical characterization, J. Food Eng. 240 (2019) 9-20. Doi:10.1016/j.jfoodeng.2018.07.002 [95] Q. Mao, M. Li, S.J. Zhang, X.J. Zhang, G.H. He, W.J. Zhang, Chitosan-hydrophobic alginate nanocomposites stabilized pH-triggered Pickering emulsion for drug controlled-release, Int. J. Biol. Macromol. 162 (2020) 1888-1896. Doi:10.1016/j.ijbiomac.2020.08.092 [96] X.M. Li, X.H. Li, Z.Z. Wu, Y. Wang, J.S. Cheng, T. Wang, B. Zhang, Chitosan hydrochloride/carboxymethyl starch complex nanogels stabilized Pickering emulsions for oral delivery of β-carotene:protection effect and in vitro digestion study, Food Chem. 315 (2020) 126288. Doi:10.1016/j.foodchem.2020.126288 [97] A. Araiza-Calahorra, Y.Q. Wang, C. Boesch, Y.S. Zhao, A. Sarkar, Pickering emulsions stabilized by colloidal gel particles complexed or conjugated with biopolymers to enhance bioaccessibility and cellular uptake of curcumin, Curr. Res. Food Sci. 3 (2020) 178-188. Doi:10.1016/j.crfs.2020.05.001 [98] Z.H. Wei, Y.J. Cheng, J.Y. Zhu, Q.R. Huang, Genipin-crosslinked ovotransferrin particle-stabilized Pickering emulsions as delivery vehicles for hesperidin, Food Hydrocoll. 94 (2019) 561-573. Doi:10.1016/j.foodhyd.2019.04.008 [99] A. Marefati, M. Bertrand, M. Sjöö, P. Dejmek, M. Rayner, Storage and digestion stability of encapsulated curcumin in emulsions based on starch granule Pickering stabilization, Food Hydrocoll. 63 (2017) 309-320. Doi:10.1016/j.foodhyd.2016.08.043 [100] P. Shao, H.Y. Zhang, B. Niu, W.P. Jin, Physical stabilities of taro starch nanoparticles stabilized Pickering emulsions and the potential application of encapsulated tea polyphenols, Int. J. Biol. Macromol. 118 (2018) 2032-2039. Doi:10.1016/j.ijbiomac.2018.07.076 [101] A.M. Shi, X.Y. Feng, Q. Wang, B. Adhikari, Pickering and high internal phase Pickering emulsions stabilized by protein-based particles:a review of synthesis, application and prospective, Food Hydrocoll. 109 (2020) 106117. Doi:10.1016/j.foodhyd.2020.106117 [102] Z. Zhang, G. Sèbe, Y.L. Hou, J. Wang, J. Huang, G.F. Zhou, Grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization, J. Appl. Polym. Sci. 138 (48) (2021) 51458. Doi:10.1002/app.51458 [103] B. Jiao, A.M. Shi, Q. Wang, B.P. Binks, High-internal-phase Pickering emulsions stabilized solely by peanut-protein-isolate microgel particles with multiple potential applications, Angew. Chem. Int. Ed Engl. 57 (30) (2018) 9274-9278.https://pubmed.ncbi.nlm.nih.gov/29845713/ [104] C.K. Surjit Singh, H.P. Lim, B.T. Tey, E.S. Chan, Spray-dried alginate-coated Pickering emulsion stabilized by chitosan for improved oxidative stability and in vitro release profile, Carbohydr. Polym. 251 (2021) 117110. Doi:10.1016/j.carbpol.2020.117110 [105] Y.Q. Hu, S.W. Yin, J.H. Zhu, J.R. Qi, J. Guo, L.Y. Wu, C.H. Tang, X.Q. Yang, Fabrication and characterization of novel Pickering emulsions and Pickering high internal emulsions stabilized by gliadin colloidal particles, Food Hydrocoll. 61 (2016) 300-310. Doi:10.1016/j.foodhyd.2016.05.028 [106] Z.H. Wei, J.W. Cheng, Q.R. Huang, Food-grade Pickering emulsions stabilized by ovotransferrin fibrils, Food Hydrocoll. 94 (2019) 592-602. Doi:10.1016/j.foodhyd.2019.04.005 |
[1] | Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation[J]. 中国化学工程学报, 2023, 56(4): 299-313. |
[2] | Shujuan Xiao, Xiaowen Huo, Shuxin Fan, Kui Zhao, Shouwu Yu, Xiaoyao Tan. Design and synthesis of Al-MOF/PPSU mixed matrix membrane with pollution resistance[J]. 中国化学工程学报, 2021, 29(1): 110-120. |
[3] | A. Yadollahi, M. Torab-Mostaedi, K. Saberyan, A. Charkhi, F. Zahakifar. Intensification of zirconium and hafnium separation through the hollow fiber renewal liquid membrane technique using synergistic mixture of TBP and Cyanex-272 as extractant[J]. 中国化学工程学报, 2019, 27(8): 1817-1827. |
[4] | Wei Zhang, Zhijun Xu, Xiaoning Yang. Molecular simulation of penetration separation for ethanol/water mixtures using two-dimensional nanoweb graphynes[J]. Chinese Journal of Chemical Engineering, 2019, 27(2): 286-292. |
[5] | Xiaoqiang Jia, Dayao Jin, Chen Li, Wenyu Lu. Characterization and analysis of petrochemical wastewater through particle size distribution, biodegradability, and chemical composition[J]. Chinese Journal of Chemical Engineering, 2019, 27(2): 444-451. |
[6] | Canan Onac, Ahmet Kaya, Duygu Ataman, Nefise Ayhan Gunduz, H. Korkmaz Alpoguz. The removal of Cr(VI) through polymeric supported liquid membrane by using calix[4]arene as a carrier[J]. Chinese Journal of Chemical Engineering, 2019, 27(1): 85-91. |
[7] | R. Donat, Ö. Durmaz, H. Cetisșli. The kinetic analysis of optimization and selective transportation of Cu(II) ions with TNOA as carrier by MDLM system[J]. , 2017, 25(4): 415-425. |
[8] | Xianzhu Huang, Jian Wu, Yudan Zhu, Yumeng Zhang, Xin Feng, Xiaohua Lu. Flow-resistance analysis of nano-confined fluids inspired from liquid nano-lubrication:A review[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1552-1562. |
[9] | Norasikin Othman, Norul Fatiha Mohamed Noah, Lim Yin Shu, Zing-Yi Ooi, Norela Jusoh, Mariani Idroas, Masahiro Goto. Easy removing of phenol from wastewater using vegetable oil-based organic solvent in emulsion liquid membrane process[J]. , 2017, 25(1): 45-52. |
[10] | Tengteng Fan, Wenlong Xie, Xiaoyan Ji, Chang Liu, Xin Feng, Xiaohua Lu. CO2/N2 separation using supported ionic liquid membranes with green and cost-effective[Choline] [Pro]/PEG200 mixtures[J]. Chinese Journal of Chemical Engineering, 2016, 24(11): 1513-1521. |
[11] | Bahram Mokhtari, Kobra Pourabdollah. Emulsion liquid membrane for selective extraction of Bi(III)[J]. Chinese Journal of Chemical Engineering, 2015, 23(4): 641-645. |
[12] | Zhongqi Ren, Xinyan Zhu, Wei Liu, Wei Sun, Weidong Zhang, Junteng Liu. Removal of Aniline from Wastewater Using Hollow Fiber Renewal Liquid Membrane[J]. , 2014, 22(11/12): 1187-1192. |
[13] | 郑辉东, 陈晶晶, 王碧玉, 赵素英. Recovery of Copper Ions from Wastewater by Hollow Fiber Supported Emulsion Liquid Membrane[J]. Chinese Journal of Chemical Engineering, 2013, 21(8): 827-834. |
[14] | Bahram Mokhtari, Kobra Pourabdollah. Nano-baskets of Calix[4]-1,3-crown in Emulsion Membranes for Selective Extraction of Alkali Metal Cations[J]. Chinese Journal of Chemical Engineering, 2013, 21(11): 1313-1318. |
[15] | 裴亮, 王理明, 郭维, 赵楠. Study on a Novel Disphase Supplying Supported Liquid Membrane for Transport Behavior of Divalent Nickel Ions[J]. Chinese Journal of Chemical Engineering, 2012, 20(4): 633-640. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||