[1] J.Y. Li, L.L. Han, J. Xie, S.X. Liu, L.Y. Jia, Multi-sites polycyclodextrin adsorbents for removal of protein-bound uremic toxins combining with hemodialysis, Carbohydr. Polym. 247 (2020) 116665. https://pubmed.ncbi.nlm.nih.gov/32829793/ [2] M. Sternkopf, S. Thoröe-Boveleth, T. Beck, K. Oleschko, A. Erlenkötter, U. Tschulena, S. Steppan, T. Speer, C. Goettsch, V. Jankowski, J. Jankowski, H. Noels, A bifunctional adsorber particle for the removal of hydrophobic uremic toxins from whole blood of renal failure patients, Toxins 11 (7) (2019) 389. https://doi.org/10.3390/toxins11070389 [3] S. Kato, K.I. Otake, H.Y. Chen, I. Akpinar, C.T. Buru, T. Islamoglu, R.Q. Snurr, O.K. Farha, Zirconium-based metal-organic frameworks for the removal of protein-bound uremic toxin from human serum albumin, J. Am. Chem. Soc. 141 (6) (2019) 2568-2576. https://doi.org/10.1021/jacs.8b12525 [4] Y. Itoh, A. Ezawa, K. Kikuchi, Y. Tsuruta, T. Niwa, Protein-bound uremic toxins in hemodialysis patients measured by liquid chromatography/tandem mass spectrometry and their effects on endothelial ROS production, Anal. Bioanal. Chem. 403 (7) (2012) 1841-1850. http://dx.doi.org/10.1007/s00216-012-5929-3 [5] S.C. Leong, T.L. Sirich, Indoxyl sulfate-review of toxicity and therapeutic strategies, Toxins 8 (12) (2016) 358. https://pubmed.ncbi.nlm.nih.gov/27916890/ [6] R. Vanholder, E. Schepers, A. Pletinck, E.V. Nagler, G. Glorieux, The uremic toxicity of indoxyl sulfate and p-cresyl sulfate:a systematic review, J. Am. Soc. Nephrol. 25 (9) (2014) 1897-1907. https://pubmed.ncbi.nlm.nih.gov/24812165/ [7] C. Stiapis, E. Skouras, D. Pavlenko, D. Stamatialis, V. Burganos, Evaluation of the toxin-to-protein binding rates during hemodialysis using sorbent-loaded mixed-matrix membranes, Appl. Sci. 8 (4) (2018) 536. https://doi.org/10.3390/app8040536 [8] D. Bergé-Lefranc, F. Chaspoul, R. Calaf, P. Charpiot, P. Brunet, P. Gallice, Binding of p-cresylsulfate and p-cresol to human serum albumin studied by microcalorimetry, J Phys Chem B 114 (4) (2010) 1661-1665. https://pubmed.ncbi.nlm.nih.gov/20067224/ [9] G.Z. Shao, Y.S. Zang, B.J. Hinds, TiO2 nanowires based system for urea photodecomposition and dialysate regeneration, ACS Appl. Nano Mater. 2 (10) (2019) 6116-6123. https://doi.org/10.1021/acsanm.9b00709 [10] M.S.L. Tijink, M. Wester, G. Glorieux, K.G.F. Gerritsen, J.F. Sun, P.C. Swart, Z. Borneman, M. Wessling, R. Vanholder, J.A. Joles, D. Stamatialis, Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma, Biomaterials 34 (32) (2013) 7819-7828. https://pubmed.ncbi.nlm.nih.gov/23876759/ [11] L.M. Lu, J.T.W. Yeow, An adsorption study of indoxyl sulfate by zeolites and polyethersulfone-zeolite composite membranes, Mater. Des. 120 (2017) 328-335. http://dx.doi.org/10.1016/j.matdes.2017.01.094 [12] F.N. Miller, D.E. Hammerschmidt, G.L. Anderson, J.N. Moore, Protein loss induced by complement activation during peritoneal dialysis, Kidney Int. 25 (3) (1984) 480-485. http://dx.doi.org/10.1038/ki.1984.43 [13] M. de Toni, R. Jonchiere, P. Pullumbi, F.X. Coudert, A.H. Fuchs, How can a hydrophobic MOF be water-unstable? insight into the hydration mechanism of IRMOFs, ChemPhysChem 13 (15) (2012) 3497-3503. https://doi.org/10.1002/cphc.201200455 [14] R.M. Yu, Y.Z. Shi, D.Z. Yang, Y.X. Liu, J. Qu, Z.Z. Yu, Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broad-spectrum and rapid adsorption of water contaminants, ACS Appl. Mater. Interfaces 9 (26) (2017) 21809-21819. https://doi.org/10.1021/acsami.7b04655 [15] X. Song, S.Y. Cui, Z.T. Li, Y.P. Jiao, C.R. Zhou, Fabrication of chitin/graphene oxide composite sponges with higher bilirubin adsorption capacity, J. Mater. Sci. Mater. Med. 29 (7) (2018) 108. https://pubmed.ncbi.nlm.nih.gov/29980863/ [16] Y.W. Yang, Y. Cheng, S.P. Peng, L. Xu, C.X. He, F.W. Qi, M.C. Zhao, C.J. Shuai, Microstructure evolution and texture tailoring of reduced graphene oxide reinforced Zn scaffold, Bioact. Mater. 6 (5) (2021) 1230-1241. http://dx.doi.org/10.1016/j.bioactmat.2020.10.017 [17] H.C. Gao, Y.M. Sun, J.J. Zhou, R. Xu, H.W. Duan, Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification, ACS Appl. Mater. Interfaces 5 (2) (2013) 425-432. https://pubmed.ncbi.nlm.nih.gov/23265565/ [18] Y.X. Xu, Z.Y. Lin, X.Q. Huang, Y. Wang, Y. Huang, X.F. Duan, Functionalized graphene hydrogel-based high-performance supercapacitors, Adv. Mater. 25 (40) (2013) 5779-5784. https://pubmed.ncbi.nlm.nih.gov/23900931/ [19] X.F. Yu, L.D. Shen, Y.D. Zhu, X. Li, Y. Yang, X.F. Wang, M.F. Zhu, B.S. Hsiao, High performance thin-film nanofibrous composite hemodialysis membranes with efficient middle-molecule uremic toxin removal, J. Membr. Sci. 523 (2017) 173-184. http://dx.doi.org/10.1016/j.memsci.2016.09.057 [20] X.F. Yu, Y.D. Zhu, C. Cheng, T.H. Zhang, X.F. Wang, B.S. Hsiao, Novel thin-film nanofibrous composite membranes containing directional toxin transport nanochannels for efficient and safe hemodialysis application, J. Membr. Sci. 582 (2019) 151-163. http://dx.doi.org/10.1016/j.memsci.2019.04.006 [21] Y.D. Zhu, X.F. Yu, T.H. Zhang, P.Y. Li, X.F. Wang, Biomimetic sulfated silk nanofibrils for constructing rapid mid-molecule toxins removal nanochannels, J. Membr. Sci. 598 (2020) 117667. http://dx.doi.org/10.1016/j.memsci.2019.117667 [22] Y.D. Zhu, X.F. Yu, T.H. Zhang, W.K. Hua, X.F. Wang, Nanofibrous composite hemodiafiltration membrane:a facile approach towards tuning the barrier layer for enhanced performance, Appl. Surf. Sci. 465 (2019) 950-963. http://dx.doi.org/10.1016/j.apsusc.2018.09.201 [23] Y.X. Xu, H. Bai, G.W. Lu, C. Li, G.Q. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, J. Am. Chem. Soc. 130 (18) (2008) 5856-5857. https://pubmed.ncbi.nlm.nih.gov/18399634/ [24] K.X. Sheng, Y.X. Xu, C. Li, G.Q. Shi, High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide, New Carbon Mater. 26 (1) (2011) 9-15. http://dx.doi.org/10.1016/S1872-5805(11)60062-0 [25] W.K. Hua, T.H. Zhang, M. Wang, Y.D. Zhu, X.F. Wang, Hierarchically structural PAN/UiO-66-(COOH)2 nanofibrous membranes for effective recovery of Terbium(III) and Europium(III) ions and their photoluminescence performances, Chem. Eng. J. 370 (2019) 729-741. http://dx.doi.org/10.1016/j.cej.2019.03.255 [26] Y. Feng, Y.Y. Wang, Y.Q. Wang, X.F. Zhang, J.F. Yao, In-situ gelation of sodium alginate supported on melamine sponge for efficient removal of copper ions, J. Colloid Interface Sci. 512 (2018) 7-13. https://pubmed.ncbi.nlm.nih.gov/29049898/ [27] H. You, Y. Yang, X. Li, K. Zhang, X.F. Wang, M.F. Zhu, B.S. Hsiao, Low pressure high flux thin film nanofibrous composite membranes prepared by electrospraying technique combined with solution treatment, J. Membr. Sci. 394-395 (2012) 241-247. http://dx.doi.org/10.1016/j.memsci.2011.12.047 [28] S. Lekawanvijit, A. Adrahtas, D.J. Kelly, A.R. Kompa, B.H. Wang, H. Krum, Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes? Eur. Heart J. 31 (14) (2010) 1771-1779. https://pubmed.ncbi.nlm.nih.gov/20047993/ [29] I. Geremia, R. Bansal, D. Stamatialis, In vitro assessment of mixed matrix hemodialysis membrane for achieving endotoxin-free dialysate combined with high removal of uremic toxins from human plasma, Acta Biomater. 90 (2019) 100-111. https://pubmed.ncbi.nlm.nih.gov/30953798/ [30] D.Y. Deng, X.M. Jiang, L. Yang, X.D. Hou, C.B. Zheng, Organic solvent-free cloud point extraction-like methodology using aggregation of graphene oxide, Anal. Chem. 86 (1) (2014) 758-765. http://dx.doi.org/10.1021/ac403345s [31] Y.X. Xu, K.X. Sheng, C. Li, G.Q. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process, ACS Nano 4 (7) (2010) 4324-4330. http://dx.doi.org/10.1021/nn101187z [32] A. Shaikh, S. Parida, S. Böhm, One step eco-friendly synthesis of Ag-reduced graphene oxide nanocomposite by phytoreduction for sensitive nitrite determination, RSC Adv. 6 (102) (2016) 100383-100391. https://doi.org/10.1039/c6ra23655c [33] J.L. Zhang, H.J. Yang, G.X. Shen, P. Cheng, J.Y. Zhang, S.W. Guo, Reduction of graphene oxide via L-ascorbic acid, Chem. Commun. (Camb) 46 (7) (2010) 1112-1114. https://pubmed.ncbi.nlm.nih.gov/20126730/ [34] L.J. Cote, R. Cruz-Silva, J.X. Huang, Flash reduction and patterning of graphite oxide and its polymer composite, J. Am. Chem. Soc. 131 (31) (2009) 11027-11032. https://pubmed.ncbi.nlm.nih.gov/19601624/ [35] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano 4 (8) (2010) 4806-4814. http://dx.doi.org/10.1021/nn1006368 [36] T.F. Jiao, H. Zhao, J.X. Zhou, Q.R. Zhang, X.N. Luo, J. Hu, Q.M. Peng, X.H. Yan, Self-assembly reduced graphene oxide nanosheet hydrogel fabrication by anchorage of chitosan/silver and its potential efficient application toward dye degradation for wastewater treatments, ACS Sustainable Chem. Eng. 3 (12) (2015) 3130-3139. https://doi.org/10.1021/acssuschemeng.5b00695 [37] D. Pavlenko, D. Giasafaki, G. Charalambopoulou, E. van Geffen, K. Gerritsen, T. Steriotis, D. Stamatialis, Carbon adsorbents with dual porosity for efficient removal of uremic toxins and cytokines from human plasma, Sci. Rep. 7 (1) (2017) 14914. https://pubmed.ncbi.nlm.nih.gov/29097715/ [38] Q. Li, Z. Wang, D.M. Fang, H.Y. Qu, Y. Zhu, H.J. Zou, Y.R. Chen, Y.P. Du, H.L. Hu, Preparation, characterization, and highly effective mercury adsorption ofl-cysteine-functionalized mesoporous silica, New J. Chem. 38 (1) (2014) 248-254. https://doi.org/10.1039/c3nj00799e [39] Y. Li, R.B. Zhao, Y.X. Pang, X.Q. Qiu, D.J. Yang, Microwave-assisted synthesis of high carboxyl content of lignin for enhancing adsorption of lead, Colloids Surf. A Physicochem. Eng. Aspects 553 (2018) 187-194. http://dx.doi.org/10.1016/j.colsurfa.2018.05.029 [40] C. Ronco, A. Davenport, V. Gura, The future of the artificial kidney:moving towards wearable and miniaturized devices, Nefrologia 31 (1) (2011) 9-16. https://pubmed.ncbi.nlm.nih.gov/21270908/ [41] X. Tao, S. Thijssen, N. Levin, P. Kotanko, G. Handelman, Enhanced indoxyl sulfate dialyzer clearance with the use of binding competitors, Blood Purif. 39 (4) (2015) 323-330. https://doi.org/10.1159/000381008 |